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Abstract—The pose-only Kalman filter (PO-KF) for visual-
inertial odometry (VIO) has demonstrated comparable local-
ization accuracy to optimization-based systems while retaining
the computational efficiency of filter-based approaches. However,
the performance of point-based PO-KF degrades in textureless
environments due to the scarcity of point features, while line
features can serve as valuable supplements. To exploit the
benefits of pose-only line-feature representation, we extend PO-
KF with a pose-only line-feature measurement model and propose
PLPO-KF, a unified pose-only representation-based Kalman filter
for point-line-based VIO. Specifically, to eliminate reliance on
3-D line reconstruction and enable immediate line updates, we
develop a trifocal tensor-based pose-only line-feature measure-
ment model with a concise and clear measurement equation.
In addition, we introduce an Inertial Navigation System (INS)-
enhanced line optical-flow tracking method to ensure robust
and accurate line feature association across multiple frames.
Extensive experimental results on both public and private
datasets demonstrate that PLPO-KF consistently outperforms
state-of-the-art (SOTA) point-based and point-line-based VIO
systems. Ablation studies further exhibit the effectiveness of
both the proposed line pose-only measurement model and the
INS-enhanced line tracking method.

Index Terms—Line feature tracking, point-line-based system,
pose-only representation, visual-inertial odometry (VIO).

I. INTRODUCTION

ISUAL-INERTIAL odometry (VIO) systems combine
measurements from a monocular camera and an inertial
measurement unit (IMU) to estimate camera poses. Owing to

Received 10 November 2025; revised 7 December 2025; accepted 8 Decem-
ber 2025. Date of publication 15 December 2025; date of current version
26 January 2026. This work was supported in part by the National Natural
Science Foundation of China under Grant 42374034 and Grant 42504027,
in part by the Key Research and Development Program of Hubei Province
under Grant 2024BAB024, in part by the Major Program of Hubei Province
under 2025BEA002 and Grant 2023BAA02602, and in part by the High
Quality Development Project of MIIT under Grant 2024-182. (Corresponding
author: Tisheng Zhang.)

Ligiang Wang is with the GNSS Research Center, Wuhan University,
Wuhan 430079, China, and also with the Electronic Information School,
Wuhan University, Wuhan 430079, China (e-mail: wlq@whu.edu.cn).

Hailiang Tang, Yan Wang, and Guan Wang are with the GNSS Research
Center, Wuhan University, Wuhan 430079, China (e-mail: thl@whu.edu.cn;
wystephen@whu.edu.cn; wanguan@whu.edu.cn).

Tisheng Zhang and Xiaoji Niu are with the GNSS Research Center, Wuhan
University, Wuhan 430079, China, also with the the Electronic Information
School, Wuhan University, Wuhan 430079, China, also with Hubei Tech-
nology Innovation Center for Spatiotemporal Information and Positioning
Navigation, Wuhan 430079, China, and also with Hubei Luojia Laboratory,
Wuhan 430079, China (e-mail: zts@whu.edu.cn; xjniu@whu.edu.cn).

Digital Object Identifier 10.1109/JI0T.2025.3643950

their low cost, compact size, and high accuracy, VIO systems
have become widely used in various Internet of Things (IoT)
applications [1], [2]. Among existing approaches, feature-
based tightly coupled VIO has emerged as the mainstream
solution due to its robustness and precision. In this paradigm,
visual features are extracted from images and fused with IMU
poses, after which camera poses are updated using either
optimization-based or filter-based estimators [3].

Points are the most widely used features in VIO systems
due to their robustness and general applicability. However, in
textureless environments, point features may become sparse,
leading to degraded localization accuracy. To address this
limitation, line features have been introduced as comple-
mentary features to enhance localization performance [4].
A critical challenge for line-based VIO is line extraction
and association (tracking). Numerous geometry-based and
learning-based methods have been developed to extract line
features from single images [5]; yet, existing line associ-
ation techniques remain insufficiently stable and accurate
for VIO. Among them, optical-flow-based line tracking [6]
demonstrates superior efficiency and accuracy but suffers from
sensitivity to initial values, often causing failures in highly
dynamic scenarios. Fortunately, the IMU in a VIO system
provides high-frequency measurements and prior camera poses
via the Inertial Navigation System (INS) before each new
image [7], [8], [9]. Leveraging these prior poses together with
historical line measurements enables the prediction of new line
positions and provides better initialization for line tracking.
Motivated by these challenges, we propose an INS-enhanced
line optical-flow tracking method to improve the accuracy and
robustness of line tracking under dynamic conditions.

When considering estimation methods in VIO systems,
optimization-based approaches are generally regarded as more
accurate, whereas filter-based methods, such as the extended
Kalman filter (EKF) and multistate constraint kalman filter
(MSCKEF), are more efficient for real-time operation on low-
cost hardware [3]. In our previous work, we demonstrated
that the pose-only representation-based Kalman filter (PO-KF)
achieves localization performance comparable to optimization-
based methods while preserving the real-time efficiency of
filter-based VIO [10]. These advantages make filter-based VIO
particularly attractive for IoT platforms. Nevertheless, PO-KF
still suffers in textureless environments due to the sparsity
of point features. Prior research [11] has shown that line
features provide an effective complement in such cases. There-
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fore, incorporating pose-only line-feature representations into
PO-KF can combine the benefits of line features and the pose-
only formulation. POPL-VIO [12] addresses this by deriving a
pose-only line-feature representation from Pliicker coordinates
[13] and integrating it into our PO-KF. However, Pliicker
coordinates are not a minimal representation, which results
in the complexity of the pose-only formulation in [12]. To
overcome the above limitations, we propose a trifocal tensor-
based pose-only measurement model for line features. Since
the line trifocal tensor directly constrains line measurements
and camera poses [14], the measurement equation in our model
is more compact and concise. Building on this model, we
design a unified pose-only representation-based Kalman filter
with both point and line features, named PLPO-KF. The main
contributions of this article are summarized as follows.

1) We propose an INS-enhanced line optical-flow tracking
method that improves the accuracy and robustness of
line tracking by leveraging prior INS poses to predict
new line positions and provide better initialization for
the tracking solution.

2) We propose a unified pose-only representation-
based Kalman filter with point-line features, termed
PLPO-KF, which extends our previous point-based
PO-KF by incorporating a trifocal-tensor-based pose-
only line-feature representation.

3) We conduct extensive evaluations of PLPO-KF on
both public and private datasets. Experimental results
demonstrate that PLPO-KF achieves superior localiza-
tion accuracy than state-of-the-art (SOTA) point-based
and point-line-based VIO systems.

The remainder of this paper is organized as follows.
Section II reviews related works. Section III introduces the
preliminaries of MSCKF-based VIO with line features. Sec-
tion IV presents an overview of the proposed PLPO-KF,
while Section V details the INS-enhanced line optical-flow
tracking method. Section VI derives the proposed pose-only
line-feature measurement model, and Section VII provides
a comprehensive evaluation of PLPO-KF’s localization per-
formance. Finally, Section VIII concludes this article and
discusses future work.

II. RELATED WORKS

VIO has attracted considerable research attention over the
past two decades [3]. Among various approaches, feature-
based VIO systems have been demonstrated to provide more
robust and accurate localization, where point features are
the most commonly relied-upon features. Nonetheless, point
features often become sparse in textureless environments,
leading to degraded performance. To address this limitation,
researchers have explored incorporating additional geometric
features, particularly line features, into VIO to improve accu-
racy and robustness [11], [15], [16]. In this part, we review
related works on line feature association (tracking) and point-
line-based VIO systems.

A. Line Extraction and Association

Line extraction is a fundamental problem in computer
vision, and numerous studies have focused on fast and accurate
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detection of line features from images [5]. Classical geometry-
based approaches include edge detection and Hough transform
methods, gradient and region-growing-based methods such as
LSD and ELSED [17], and edge-drawing with line-fitting
methods such as EDLines [18]. More recently, deep learning-
based methods such as L-CNN [19] and HAWP [20] have
been proposed to enhance line extraction. However, these
approaches mainly focus on extracting line features from
individual images, without addressing line association across
multiple frames.

Line association (tracking) across images is equally impor-
tant [21]. Existing methods can be broadly categorized
into three types: descriptor-based, point-based, and line-flow
(LF)-based associations.

1) Descriptor-Based Association: This category computes
line segment descriptors using either traditional or deep learn-
ing methods and matches descriptors between image frames.
The gradient-based line binary descriptor (LBD) and deep
learning-based descriptors, such as DLD [22] and WLD [23],
compute line descriptors using the neighborhood of a line
feature. SOLD? [24] leverages deep learning to adaptively
select sampling points and compute line descriptors. The
descriptor-based association methods are generally more accu-
rate. However, the computation of descriptors is generally
computationally intensive, making them less suitable for real-
time VIO applications.

2) Point-Based Association: Points sampled along or near
line features are used to establish line associations across
frames. For example, Xu et al. [25] employed optical flow
to track sampled points, associating two line features if
most point features were successfully tracked between frames.
AirSLAM [26] instead uses nearby points for line association,
considering two line features matched if their nearby points
satisfy predefined thresholds. Point-based methods are gener-
ally more efficient than descriptor-based approaches, but they
often ignore the structural information of line features, making
them more prone to mismatches. Furthermore, the choice of
sampling points is usually heuristic and may not generalize
well to line features of different lengths.

3) LF-Based Association: Wang et al. [27] proposed an
LF-based simultaneous localization and mapping (SLAM)
approach that exploits the spatiotemporal consistency of lines
to form line flows, predict and extract new lines, and update
existing flows [27]. However, this method requires 3-D posi-
tions of line features to establish spatial constraints, which
limits its applicability. EPLF-VINS [6] introduced an optical-
flow-based line tracking method that models 2-D line motion
between frames as a combination of start-point translation
and line rotation. The translation and rotation are iteratively
estimated by enforcing photometric consistency across frames.
Building upon this, MLINE-VINS [28] further accounts for
length variations of line features, modeling them as linear
changes and jointly estimating translation, rotation, and length
parameters.

Compared with  descriptor-based and point-based
approaches, LF-based tracking directly estimates the new line
position, thereby avoiding the negative impact of unstable
line extraction. Moreover, it has a lower computational cost
while preserving geometric information, making it well-suited
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for consecutive-frame association in VIO systems. However,
the iterative solution relies on accurate initialization, which
may not hold under highly dynamic scenarios, leading to
frequent tracking failures. To address this limitation, we
propose an INS-enhanced line optical-flow tracking method,
which improves stability and robustness across diverse motion
conditions.

B. Point-Line-Based VIO Systems

Point-line-based VIO systems can be broadly categorized
into optimization-based and filter-based methods, depending
on the employed state estimators. Among optimization-based
methods, PL-VIO [11] extends VINS-Mono [29] by incorpo-
rating line features, using LBD descriptors for line matching,
and minimizing the pixel distance from observed line end-
points to the projected 2-D line features as the optimization
objective. PL-VINS [30] further refines the line segment
extraction method to ensure real-time performance. EPLF-
VINS [6] and MLINE-VINS [28] employ optical-flow-based
line tracking methods, significantly improving tracking effi-
ciency and localization accuracy. AirSLAM [26] combines
deep learning-based line features with nearby-point-based
association, leveraging deep learning and relocalization for
superior performance. Si et al. [31] proposed POL-VIO, which
adopts a new measurement model based on midpoint position
error and angular deviation between observed and projected
lines. Xu et al. [25] and Ye et al. [28] integrated and clas-
sify lines as structural or non-structural to construct distinct
constraints for state optimization. Filter-based point-line-based
VIO systems are relatively few. Yang and Huang [32] inte-
grated point and line features into the MSCKF framework
and analyzed system observability. Zou et al. [15] developed
StructVIO and StructSLAM, which leverage structural lines
and employ EKF for state estimation.

The pose-only representation for point features, introduced
by Cai et al. [33], decouples feature positions from cam-
era poses and provides significant efficiency gains in visual
3-D reconstruction. This formulation has been adopted in
optimization-based VIO systems such as PO-VINS [34] and
PIPO-SLAM [35], yielding notable improvements in optimiza-
tion efficiency. Building upon this, our prior work extends
the point pose-only representation to a filter-based frame-
work, proposing PO-KF [10], which achieves comparable
localization accuracy to optimization-based methods while
maintaining real-time performance. Zhang et al. [36] further
analyzed how the immediate update strategy of the pose-only
representation enhances filter-based localization accuracy.

Applying the same idea to line-based VIO systems, pose-
only line-feature representations are expected to improve
localization performance over traditional methods. Following
this concept, Yang et al. [12] developed POPL-VIO, which
derives a pose-only representation from Pliicker coordinates.
Although this approach achieves higher accuracy than the
point-only MSCKF, Pliicker coordinates are not minimal
representations and lead to a rather complex representation
for line features. In contrast, the line trifocal tensor directly
constrains line measurements and camera poses, providing a
more concise and intuitive line formulation. Motivated by this,
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we propose a trifocal tensor-based pose-only representation
for line features and introduce PLPO-KF, a unified pose-only
Kalman filter (PO-KF) VIO system that integrates both point
and line features.

III. PRELIMINARY OF MSCKF-BASED
VIO WITH LINE FEATURES

To better introduce the proposed PLPO-KF, we present pre-
liminaries on MSCKF-based VIO systems with line features in
this section, including line representations, the trifocal tensor,
and the MSCKF-based line-feature measurement model.

A. Line Representation

Lines can be represented in various forms. Pliicker coor-
dinates are suitable for coordinate transformation, while an
orthogonal formulation provides a minimum parametric rep-
resentation. Since cameras observe lines in 2-D images, the
2-D line parameterizations are also presented.

1) Pliicker Coordinates Representation: The Pliicker coor-
dinates of a 3-D line are defined by the plane normal n
(spanned by the line and the origin) and the line direction
v [13]. In the world frame w, a line £ is written as follows:

w nw
e-r] 0

The distance from the origin to the line is 4% =
(=" 1D/ A" 1D.

The Pliicker transformation maps line coordinates between
frames. For a camera pose (R}, pY), the mapping from the
camera frame to the world frame is given by

v = ["W} = [RZV [Pl R?} ["Z} ST Q)
v 0 RY 4

2) Orthogonal Representation: Pliicker coordinates use six
parameters for a 3-D line, which is redundant since a line has
four degrees of freedom. Hence, Kottas and Roumeliotis [37]
proposed an orthogonal representation with a distance scalar
d; and a unit quaternion q; that encodes the line orientation.
A convenient construction of the associated rotation matrix is

R (q) =1 w1 2] 3)

The error distribution of the rotation matrix and distance
scalar can be expressed as follows:

R =R} (I-16/]x), di=d ~dd @)

where 6; denotes the error state of the line direction, and dd
represents the distance error. The minimal 4-D error state of
the line orthogonal representation is dp; = [HIT 6d]T.

3) 2-D Line Parameterization: When observing a 3-D line
in the 2-D image plane, we obtain the start point p? and end-
point p, and compute its 2-D line parameters I’ = [l 5 I}].
The camera intrinsic parameters, including focal lengths, f;
and f;, and principal point, ¢, and c¢,, can convert the line’s
endpoints from the unified camera coordinates to the pixel
frame. Therefore, the transformation of 2-D line parameters
from the unified camera frame to the pixel frame is

14 1

I % (1) 0 1

lg =10 7 0 5. (®)]
ARSIt
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Fig. 1. Line 2-D projections of 3-D line L in three camera views.

B. Trifocal Tensor for Line Features

The trifocal tensor describes the geometric relationship
among the projections of a 3-D line observed in three views.
As illustrated in Fig. 1, the projections of a 3-D line L in the
image planes of cameras c, ¢’, and ¢’ are denoted as I, I’, and
1", respectively. Taking camera ¢ as the reference frame, the
projection matrices of the three cameras are given by

P=[I505], P =[Aay], P'=[Bbs] (6

where A and B are the rotation (or homography-at-infinity)
matrices from camera c to ¢’ and ¢”’, while a4 and b, represent
the epipoles induced by camera ¢ in ¢’ and ¢”, respectively.

As shown in Fig. 1, each 2-D line feature on the image
plane can be back-projected into a 3-D plane. These planes
can be expressed using the camera matrices as:

= PTI, 71', — P/Tl/, 71'” — PNTl// (7)

where I denotes the homogeneous representation of a 2-D line
feature and & denotes the homogeneous representation of the
corresponding 3-D plane.

Since the three planes &, 7/, and 7’ intersect at the same 3-
D line, the matrix formed by stacking them must have rank 2,
i.e., rank([zr 7’ &”’]) = 2. Thus, one plane can be expressed as
a linear combination of the other two. For example,

n=an +pr’. (8)

Substituting the above expressions into (8), the relationship
among the three 2-D line features can be derived as follows:

1= (ABSI) —1Ta, BT 9)

Let a; and b; denote the ith column of A and B, respectively.
Define T; = ain - a4biT, the above relationship can be
simplified as:

L=1TT",

i=1,2,3. (10)

The set Ty, T», and T5 constitutes the trifocal tensor for line
features. Hence, (9) can be expressed compactly as follows:

I={l,b, 1} =1"{T\, T, T5}1". (11)

C. MSCKF-Based Line-Feature Measurement Model

The update strategy of the MSCKF-based line-feature VIO
is similar to that of the point-feature MSCKEF. Specifically,
the system state is updated either when a tracked line feature
fails or when a line feature reaches the maximum tracking
length. The selected line features are first triangulated using
the cloned poses, and all corresponding measurements are
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Fig. 2. Overview of the proposed PLPO-KF. T.&E.: Tracking and extraction.

then used to update the system through the line measurement
model. This section introduces the line-feature measurement
model adopted in the MSCKF-based VIO.

Projecting a triangulated 3-D line feature L onto each
measurement pixel frame, the line measurement residuals are
obtained by computing the distances between the observed
start and end points and their corresponding projected 2-D
line features in the image plane. The residuals of this line
feature in the c;-frame can be expressed as follows [38], [39]:

2 =y (b, (b, (be (p}) RS P2 K) 5252

where p}' denotes the orthogonal representation of the trian-
gulated 3-D line, p}' and p.’ are the observed start and end
points in the c¢;-frame, K is the camera projection matrix, h,
represents the line transformation function, h; is the coordinate
transformation function, h,, is the projection function, and h,
computes the distances from the endpoints to the correspond-
ing line feature.

Stacking the measurements of all features and simplifying
the equation, we obtain the complete line-feature MSCKF
measurement equation as follows:

12)

7z’ = H.x + H,6p} + n’ (13)

where H, and H, are the Jacobian matrices with respect to
the state vector and the line feature position, respectively, z”
denotes the measurement innovation, and n” represents the
measurement noise. Finally, a nullspace projection is applied
to eliminate the line feature position from (13), followed by
measurement compression and a Kalman update to update the
system state.

IV. SYSTEM OVERVIEW OF PLPO-KF

The system overview of the proposed PLPO-KF is depicted
in Fig. 2. PLPO-KF is a point-line-based, filter-based VIO
system that extends our previous work, PO-KF [10]. The
processing flow of PLPO-KF is as follows. After system
initialization, IMU data are processed for navigation state
recurrence, covariance propagation, state clone, and augmen-
tation. When a new image arrives, both point and line feature
tracking and extraction (T.&E.) are executed in parallel, where
INS-enhanced optical-flow-based methods are employed for
line tracking. The cloned IMU poses are maintained using a
sliding window strategy, while the point and line features are
managed accordingly. When enough visual measurements are
available for the state update, the base frames for both point
and line features are selected, and their pose-only measurement
models are then constructed. Finally, these visual measure-
ments are incorporated to update the system state. The feature
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Algorithm 1 PLPO-KF Processing Pipeline

Require: IMU stream, image stream, system hyper-parameters(installation
parameters, noise, window size W et al.).
Ensure: Estimated trajectory, covariance, and calibrated parameters.
1: Initialize: IMU state, covariance, system parameters.
2: while data streams active do
3: IMU buffering: buffer IMU data until new image arrives.
4 if new image (#7) arrives then
S: IMU propagation: propagate IMU state and covariance to #;.
6: State clone & augmentation: clone current IMU pose into the
sliding window, augment into the state vector and covariance.

7: Point T.&E.: track existing points; extract new points as needed.
8: Line T.&E.: predict line parameters and track existing lines;
NCC-based expansion; extract new lines as needed.

9: Feature management: update point and line features.

10: if enough visual measurements for update then

11: Base-frame selection: select base-frames for all features.

12: Pose-Only modeling: construct point pose-only models and
trifocal tensor line pose-only models.

13: Outlier rejection: perform chi-square test on each feature.

14: Kalman update: update state with all visual measurements.

15: end if

16: if number of clones > W then

17: Marginalization: remove measurements associated with the

oldest clone; remove the oldest clone from the state; marginal-
ize the corresponding covariance rows/columns

18: end if

19: end if

20: end while

Images Preprocess last lines Y Line position
Prior poses & Undistortion exists? prediction Optical-flow-
vN based line
Save lines and Line extraction NCC-based tracking

Return  <«—

image pyramids & Sparsification Line expansion

Fig. 3. Processing flow of the proposed line optical-flow tracking.

management and state marginalization processes will proceed
if the number of cloned poses exceeds the maximum size. The
detailed processing pipeline is summarized in Algorithm 1.

Since PLPO-KF inherits the same system architecture and
all functionalities of PO-KF, it shares the same IMU kinematic
and state equations as PO-KF, together with online calibration
of camera-IMU extrinsics and time delay. In addition, feature
management and base-frame selection for line features follow
principles similar to those used for point features in PO-KF.
The modules dedicated to INS-enhanced line T.&E., as well as
the pose-only line measurement model, are described in detail
in the following sections.

V. INS-ENHANCED LINE OPTICAL-FLOW TRACKING

This section presents the proposed INS-enhanced line T.&E.
module in PLPO-KF. The processing pipeline is shown in
Fig. 3. When a new image arrives, it is first preprocessed
using histogram equalization and undistortion. The subsequent
procedure depends on whether line features from the previous
frame are available. If no previous line features exist, we
directly extract new line features using the ELSED method
[40], followed by sparsification with occupancy masks. If
previous line features are available, we predict their positions
in the new image and refine them using an optical-flow-
based line tracking method. The tracked line features are then
expanded using a normalized cross-correlation (NCC) strategy.
To maintain a sufficient number of features, new line features
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are further extracted and sparsified. Finally, we save the current
detected line features and images for the next tracking.

Among the processing steps in Fig. 3, the key components
of the proposed method are line position prediction, line
optical-flow tracking, and line expansion. For clarity, we first
describe the basic line optical-flow tracking method, followed
by the INS-aided line position prediction and the NCC-based
line expansion algorithm.

A. Line Optical-Flow Tracking

The fundamental principle of optical-flow tracking is the
photometric consistency assumption, which states that the
photometric intensity of a point remains constant between two
consecutive frames

1(u' V' 14 6t) = I(u,v,1) + Lou+ I,6v + L6t

0 = L,ou + 1,6v + 1,6t (14)

where I denotes the photometric intensity, (u#,v) and (u’,v")
denote the pixel coordinates at time ¢ and ¢ + ¢¢. I, I, and I,
are the image gradients along the u and v directions and the
temporal gradient, respectively.

Sampling n points along the line feature, denoting the line’s
angle at time ¢ as 6, and denoting the ith point in this line
feature as p; = (u;,v;), the corresponding ith point at time
t 4 ot can be expressed as follows:

u

u; + g1 +licos (6 + g3) — licos (6)
vi + g2+ Iisin (0 + g3) — I; sin (6)

.
1
i 15)
where /; is the distance from the ith point to the line’s start
point, g; and g, are the offsets in the u- and v-directions of the
line’s start point, and g3 is the angle offset of the line feature
from time ¢ to ¢ 4 . Notably, although the length /; is actually
not constant in image frames at time ¢ and ¢ + 6t, we neglect
this change considering the limited and complicated change. In
addition, the angle change g3 is also considered tiny between
two consecutive frames.

Substituting (15) into (14), we obtain the constraint equation
for the ith point as follows:

\4

10 I sin (9)] 81 6)

[Iu,i Iv,i] [0 1 li cos (0) 82 = _Il‘,iét'
3

We extract a patch around all n sampling points and sub-
stitute all points within these patches into (16). Then the line
optical-flow parameters g;—g3 are iteratively estimated using
the Gauss—Newton method.

B. Line Prediction Using Prior INS Pose

The initial values of the line optical-flow parameters
g1—g3 play a crucial role in ensuring convergence of the
Gauss—Newton method. We predict the line positions using the
INS prior poses and calculate initial estimates of the optical-
flow parameters in this section.

Based on historical measurements, we classify line features
into two categories: 1) lines with sufficient measurements
and parallax and 2) lines with insufficient measurements or
parallax. We then describe the prediction methods for these
two cases separately.
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Fig. 4. Predicted line positions in the new camera frame using the prior INS
pose. (a) Predicted line with line trifocal tensor. (b) Predicted line with only
rotation compensation.

1) Lines With Sufficient Measurement and Parallax: For
line features with sufficient parallax, the trifocal tensor is
employed to predict their 2-D parameters. To enhance pre-
diction accuracy, we select as base frames the two historical
camera frames with the largest parallax angle. Taking the
current camera frame as the reference frame and substituting
the line’s 2-D parameters together with the poses of the
two base frames into (9), We obtain the predicted line 2-D
parameters in the current camera frame 7171, as illustrated in
Fig. 4(a).

Denoting the last camera frame as ¢ (c; can be one of the
two base frames) and the line 2-D parameters in this frame as
1%, we can predict the initial value of the angle offset g5 as

follows:
i P
g3 (0) = arctan —;7 — arctan (_l‘lT")
2 2

where angular wrap-around is properly compensated.

Since I”" defines an infinite line, we can only calculate the
initial rotation, not the initial position offset. Denote the start
point in the ¢, frame as p$* and its counterpart in the current
camera as p{. Their epipolar constraint can be described as:

(r%)" [p%], RGPS =0,
D e ——

(li{epi)r
The epipolar constraint is also the epipolar line parameters
for the line’s start point p§, denoted as li"epi. We transform
the line parameters to the corresponding pixel frame p; using
(5), yielding I” .. As shown in the p; frame of Fig. 4(a), the

s,.epi”
intersection point of the epipolar line I”’_. and the predicted

s.epi
line I” is the predicted start point p2. Then, we can obtain

the initial values of the start-point offsets as follows:
[21(0) &2 0]" = pr = p*.

2) Lines With Insufficient Measurement or Parallax: We
lack depth information of line features with insufficient mea-
surements and parallax, which prevents us from predicting
the accurate line 2-D parameters in the current camera frame.
Nevertheless, we can still compensate for the rotation informa-
tion using the prior INS pose and predict coarse optical-flow
parameters, as illustrated in Fig. 4(b).

The visual measurements of line’s endpoints are only their
direction in the camera frame, denoted as p§ and p¢. To
compensate for the prior INS rotation, we transfer the direction

a7

(18)

19)
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(b)

Fig. 5. Line optical-flow tracking results under dynamic conditions. (a) Basic
method. (b) INS-enhanced method. Previous frame (left) and current frame
(right). Previous lines (yellow); predicted lines (orange); failed tracks (red);
successfully tracked lines (green); line IDs (numbers).

of the line’s endpoints from camera frame c; to the current
camera frame as follows:

P = KREp!

ck

P2’ = KR(pS. (20)

Then, we can obtain the initial values of the start point
offsets using (19) and predict the initial value of the angle
offset g3 as follows:

ﬁglv - ﬁ{?lv llfk
g3 (0) = arctan (W) — arctan (_lg_k) 20
e,u S,u

with angular wrap-around properly compensated. These pre-
dicted optical-flow parameters are then employed to initialize
the iterative solver.

3) Analysis of the INS-Enhanced Line Tracking: Initial
values play a crucial role in the convergence of iterative line
optical-flow tracking. In the basic method, where no prior
information is available, the initial parameters are simply set
to 0. As a result, the basic approach becomes highly vulnerable
to large interframe motions. In contrast, the proposed INS-
enhanced method leverages INS prior poses to predict the
initial optical-flow parameters, thereby significantly improv-
ing both the convergence and accuracy of line optical-flow
tracking.

To intuitively demonstrate the advantages of the proposed
method, we present the tracking results of the basic optical-
flow method under dynamic conditions in Fig. 5(a) and those
of the proposed INS-enhanced method in Fig. 5(b). The
orange lines in the right image of Fig. 5(a) are the initial
positions for the basic line optical-flow solution, which are
actually the positions of the previous image. The difference
between the orange lines and their actual positions is quite
large, indicating the large interframe dynamic. As a result of
the inaccurate initial positions, the basic optical-flow method
yields numerous tracking failures (red lines). In contrast, the
predicted orange lines in Fig. 5(b) almost coincide with their
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Fig. 6. Patch NCC-based line expansion in the gradient magnitude image. The
yellow line and point represent the tracked line and its endpoint; the brown
dotted line and point represent the extended part and the new endpoint.

corresponding positions in the new image. Consequently, the
INS-enhanced method produces a higher number of success-
fully tracked lines (green). Furthermore, even when tracking
fails, the INS-enhanced results remain close to their true
positions, whereas the failures of the basic method appear
disordered and scattered. These observations demonstrate that
the INS-enhanced method not only improves the accuracy and
convergence of line optical-flow tracking but also mitigates
system instability caused by the random divergence of tracking
solutions.

C. Patch NCC-Based Line Expansion

Due to viewpoint changes and limitations of line extraction
methods, the tracked line features in new images are often
shorter than their true counterparts. To avoid progressive
shortening over time, we extend the tracked line features after
line tracking. The process is illustrated in Fig. 6, where line
expansion is performed on the gradient magnitude image.

At each endpoint, we take a patch as the reference patch for
NCC comparison. The candidate patch is then shifted along
the line direction by one patch size, and its NCC with the
reference patch is computed as follows:

> i T

I T L

where T and [ are the reference and candidate patches, and n
is the patch pixel size.

If the NCC value exceeds a predefined threshold, the
candidate patch is accepted as a valid extension, and the
process continues. When the NCC falls below the threshold
or the patch exceeds the image boundary, the process stops,
and the center of the last valid patch is taken as the new
endpoint. The same procedure is applied to the other endpoint,
resulting in the extended line feature.

NCC(T,I) = (22)

VI. POSE-ONLY LINE-FEATURE MEASUREMENT MODEL

A. Pose-Only Line-Feature Representation

Line 2-D parameters are straightforwardly employed in
line measurement equations. Therefore, we employ a trifocal
tensor-based pose-only representation that describes the line’s
new 2-D parameters instead of its 3-D position. To deduce the
pose-only line-feature representation, we denote the current
camera frame as ¢;, and the two base frames as ¢; and c;j,
and present the line representation in Fig. 7(a). The line
measurements in their respective pixel frames are expressed
as I[P, IP7, and IP'. Taking the ¢; camera frame as the reference
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(b)

Fig. 7. (a) Trifocal tensor-based line-feature representation and measurement
innovation. (b) Detail illustration of the line-feature measurement innovation.

frame, we obtain the camera matrices of the three views for
this line

Pi=[R: pi], Pj=[Ri pi], Pi=[I05x].

Substituting the camera matrices into (9), we derive the
line’s 2-D parameters in the current image frame as follows:

= () R () 1) = ) R 24)

According to the definition in (10), we obtain the trifocal
tensor matrices for the current line feature I as follows:

T, =Re, (p)" - pl (Rijen)"

where m = 1,2,3, e, is the mth column of a 3-D identity
matrix. Substituting (25) back into (24), we can express the
trifocal tensor-based pose-only line-feature representation as
follows:

(23)

(25)

Pr= LB EY = (1) (L Ty, TS (26)

The derived trifocal-based pose-only line-feature represen-
tation is obviously concise and intuitive, making it easily
integrated in the subsequent line measurement model.

B. Measurement Update

We construct the line measurement model at the newest Ith
pixel frame using the observed line endpoints p’ andi)fl and
the pose-only line-feature representation I”’. The measurement
residuals in the I/th pixel frame are defined as the distances
from the observed endpoints to the corresponding projected
2-D line feature, as illustrated in Fig. 7(b). The measurement
equation is formulated as folllows:

! = e (b, (17,07, R, pi, R, p R ) B2 BY) - @D)

where zlp ! is the measurement innovation, h; is the point-to-line
distance function, and h, is the pose-only line-feature repre-
sentation function. Illustratively, Fig. 7(a) and (b) visualizes
the h, and h, formulations, respectively.

The pose-only line-feature measurement model (27) com-
poses two functions, which yield a more compact and intuitive
form than the MSCKF-based line-feature measurement model
(12). Using the trifocal tensor-based line-feature representation
also makes our measurement model also more concise than the
Pliicker-based pose-only model in [12].

The camera poses required in (27) are computed from
the camera-IMU extrinsic parameters, and the cloned IMU
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poses. Hence, the proposed pose-only line-feature measure-
ment model depends only on the state vector and can be
simplified as follows:

2" = Hyx + n” (28)

where H, is the Jacobian with respect to the state vector and
n”' is the measurement noise. Then, we derive the complete
measurement equation and Jacobian matrix.

1) Jacobian of the Distance Function: Denoting the pro-
jected line in the I/th camera image frame as I”' = h,, the
distance from the observed line endpoints to the projected 2-D
line feature are

pﬁ’ LI

ﬁl?l P
P = $ . =

* L 2 i 2 ¢ i 2 i 2

(@) + (&) ()" + (&)
where z; and z, are the distances from the observed start and
end points to the projected line in the current pixel frame,
respectively.
The Jacobian of the start point distance z; with respect to

the projected line feature is as follows:

~D T ~
. _ @) P [sz 2 ]

™ - 1112 T In

where In = (") + (15')*)!/%. The Jacobian of z, with respect
to I’ can be derived analogously.

By stacking both endpoints, the line measurement innova-
tion in the /th frame is expressed as: z)' = — [Zfl Zfl]T, and
the Jacobian with respect to the projected line I becomes

z;’[ ;;’1
J = T gz |-
i

2) Jacobian of the Line Pose-Only Representation to Cam-
era Poses: As derived in (26) of Sec. VI-A, the line 2-D
parameters I’ are functions of the ¢;, ¢j, and ¢; camera poses.
The mth element of I”" is expressed as follows:

= (1) T, (32)

The error-state perturbation method is employed in (32) to
derive the Jacobian of the mth element in I”" with respect
to the camera poses. Denoting the error-state of the ith
camera pose as 6T = [0 (6p:Yi)]T and substituting the error-
state perturbation into (25) and (32), we obtain the Jacobian
matrices as follows:

(29)

(30)

€2V

ITF: _ a4 [R‘éjem(p:,j )Tm]x (TR 1P (lp’)T RY
| _(l/)f)T[pE;egRgGIPj]x i

Jl;jn: — __(l”’)'l:RTg?n (I’EI’F)T [l”j] x _lPiR?’em (Rrv lpf) T]
9L+ pge R[], ' !
4 () pien[REPT] el RS () R

Stacking the Jacobian matrices of the three elements in 17,
we can get the Jacobian matrix of I”" with respect to the c;
camera pose:

T
wo_ i T i T i T
JT%‘[(“&) (v7:) ()
The Jacobian matrices of I to the ¢; and ¢; poses can be

. . Pl Pl
obtained in the same way and denoted as J%, and J%..
cj cl

(34)

5327

3) Jacobian of Camera Poses to the State Vector: The
error-states of IMU poses are augmented in the state vector
instead of the camera poses. Therefore, we need to construct
the Jacobian matrices with respect to the state vector. The
ith camera pose is computed from the ith IMU pose and the
camera-IMU extrinsic parameters as follows:

R =R} (R;)"
., = p, — Ripj.
Denoting the error-state of the ith IMU pose as 6T, =
[0,{1_ (6p”bVi)T]T, denoting that of the camera-IMU extrinsics as
6Tve = [6F, (6pf,)T]T, and substituting them into (35), we

can express the Jacobian of camera pose to the IMU pose and
extrinsics as follows:

o] =[x T, 2] Lot
opr |~ |-Ry [Pl], 5] |opy

i, 4
Ry [p2], R | [6p]

According to the definition of the state vector of PLPO-KF,
we can express the Jacobian matrix of the ith camera poses to
the complete state vector as follows:

™ o -R§ 0; - R§ 0; ---

t= W w w .37

Jx [...Rbi[pf]x _Rc;“'_Rbi[p?]x I - (37

4) Complete Measurement Jacobian: Finally, we calculate
the complete Jacobian matrix of the pose-only line-feature

measurement model based on the chain rule, as displayed in
the following equation:

(35)

(36)

Pl o T o T T
Hy=J5 (JR D + I+ I000). 38)
i Y, ;

The expression of the complete Jacobian matrix further
demonstrates the conciseness and intuitiveness of the proposed
pose-only line-feature measurement model. Then, we can
directly update the state vector using the line’s measurement

and the computed measurement Jacobian matrix.

C. Base Frame Selection for Line Feature Update

Similar to the point-based pose-only measurement model,
two base frames are required for each line feature to construct
the measurement equation. Let the base frames and the current
frame be indexed as i, j, and [. The first base frame, i.e., the
ith frame, is fixed as the oldest frame in the sliding window
to mitigate accumulated IMU drift.

Following our previous work [10], we use the product of
parallax magnitudes as the base-frame selection indicator. The
line parallax between ith and jth frames is defined as:

- .. Cj
Il ng; < R¢ ne ||

N - (39)
Il ng; 1Ill RE me) ||
and the base-frame selection metric for a line feature is:
dro="1; %9 (40)

The optimal second base frame j* is selected from the
candidate frames in the sliding window by the following
conditions:

J = argmaxd, q. 41
J
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Fig. 8. Wheeled robot platform for the i2Nav-Robot dataset.

VII. EXPERIMENTS AND RESULTS
A. Experimental Setup

We conduct a comprehensive evaluation of the proposed
PLPO-KF on both public and self-collected datasets. The
public datasets include EuRoC and i2Nav-Robot, captured by
a drone and a low-speed wheeled robot, respectively. The self-
collected dataset was recorded using a handheld platform.

1) Public EuRoC Dataset: The EuRoC dataset [41]
contains drone sequences recorded in challenging indoor envi-
ronments, including low-light conditions and pure rotations.
The left monocular images and IMU data of all 11 sequences
are utilized in our evaluation. The provided ground truth is
used to assess absolute position error.

2) Public i2Nav-Robot Dataset: The i2Nav-Robot dataset
[42], released by our team, was collected using a low-speed
wheeled robot (as shown in Fig. 8) across multiple campus
scenarios. Notably, the image timestamps correspond to the
start of exposure. In this evaluation, we only employ the
left monocular images (downsampled to 800 x 600) and the
IMU data from three parking sequences. These sequences
contain structured environments, span a total duration of 3458
s, and cover 4249 m of trajectory. The provided continuous
ground truth is used for evaluating both absolute and relative
pose errors.

3) Private HandNav Dataset: We further validate the pro-
posed method on a self-collected handheld dataset (HandNav).
The platform (see Fig. 9) is equipped with an MEMS IMU
and a monocular camera, while light detection and ranging
(LiDAR)-based mapping provides ground truth. The IMU runs
at 200 Hz, and the camera captures 900 x 600 images at
20 Hz. The dataset includes ten sequences collected in four
environments (stair, corridor, roof, and a hybrid scenario),
spanning 2925 s and 3507 m. The LiDAR-derived ground truth
is used to evaluate the absolute position error.

4) Evaluation Method: We build PLPO-KF upon our pre-
vious work PO-KF. We compare PLPO-KF against several
SOTA open-source VIO systems, including point-based meth-
ods (OpenVINS [39], VINS-Mono [29], ORB-SLAM3 [43])
and point-line-based methods (PL-VIO [11], PL-VINS [30],
and EPLF-VINS [6]). In PLPO-KF, the sliding window size
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Fig. 9. Handheld platform and test scenes for the HandNav dataset.

is set to 20 camera poses, with approximately 100 feature
points and 40 line features extracted per image. We use the
default or appropriately tuned parameters for the open-source
baselines. For a fair comparison, loop closure is disabled for
both VINS-Mono and ORB-SLAM3 in our evaluation. It is
also worth noting that VINS-Mono, ORB-SLAM3, PL-VIO,
PL-VINS, and EPLF-VINS rely on non-linear optimization
for state estimation, while both OpenVINS and our PLPO-KF
adopt filter-based architectures.

For quantitative evaluation, we employ the EVO toolkit
[44], which provides metrics including absolute translation
error (ATE), absolute rotation error (ARE), relative translation
error (RTE), and relative rotation error (RRE). In addition,
we specifically evaluate the performance of the proposed
INS-enhanced line optical-flow tracking method and analyze
the localization benefits introduced by the trifocal tensor-based
line pose-only measurement model.

B. Evaluation of Localization Accuracy

1) Public EuRoC Dataset: We first evaluate the localiza-
tion performance of the proposed PLPO-KF on the EuRoC
dataset, in comparison with SOTA open-source VIO algo-
rithms. Table I reports the absolute position errors across all
11 test sequences of the other methods. The best result for
each sequence is highlighted in bold, and the second-best is
underlined. Due to the relatively short duration and limited
motion range of EuRoC sequences, all methods achieve small
errors with limited variation.

It is observed that ORB-SLAM3 achieves significantly
better performance than other methods on almost all sequences
of this dataset. This is because ORB-SLAM3 maintains
co-visible keyframes and a local map, enabling frequent
relocalization even without loop closure on EuRoC, which
differs from a strict odometry-only setting. Therefore, in
the following paragraph, we additionally compare PLPO-
KF only with other VIO baselines to fairly assess odometry
performance.

Among odometry systems, the filter-based OpenVINS
diverged on the MHO4 sequence, whereas other optimization-
based methods and our filter-based PLPO-KF successfully
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TABLE I
ABSOLUTE POSITION ERRORS (M) ON THE EUROC DATASET

Method MHOI MH02 MH03 MH04 MHO5 VI-01 VI-02 VI-03 V2-01 V2-02 V2-03 RMS
OpenVINS 0.195 0.135 0.250  failed 0418  0.110  0.080 0.090 0.099 0.093  0.150 -
VINS-MONO  0.191 0.173 0.196  0.361 0275 0.066 0.093 0.162 0.079 0.133  0.242 0.198
ORB-SLAM3  0.064 0.055 0.045 0.159 0.098 0.038 0.055 0.053 0.047 0.031 0.047 0.072
PL-VIO 0.179  0.154 0258 0309 0238 0.074 0.107 0.189 0.082 0.144 0.257 0.196
PL-VINS 0210  0.185 0217 0240 0273 0.069 0.108 0.162 0.084 0.103 0.191 0.179
EPLF-VINS 0.172  0.088 0.182  0.235 0215 0.066 0.056 0.132 0.084 0.098 0.168 0.148
PLPO-KF 0.066  0.178 0.152  0.129 0278 0.064 0.037 0.082 0.077 0.087 0210 0.142
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Fig. 10. Resulting trajectories of the Robot parking sequences. All trajectories start from the same point and end at different stars.

completed all sequences, demonstrating stronger robustness of
PLPO-KF than OpenVINS. In terms of localization accuracy,
point-line-based methods (PL-VIO, PL-VINS, and EPLF-
VINS) statistically outperform the point-only VINS-Mono,
confirming the advantage of incorporating line features in
VIO systems. Among them, EPLF-VINS achieves lower
errors than PL-VIO and PL-VINS, mainly due to improved
line-tracking continuity from its LF-based tracker. Simi-
larly, our PLPO-KF benefits from the INS-enhanced LF
(IE-LF) tracking, which provides more reliable line track-
ing and further refines accuracy through its pose-only line
measurement model. Consequently, PLPO-KF achieves the
second-best or even best performance on 8 of the 11
sequences and delivers better statistical localization accu-
racy compared with any other open-source pure odometry
algorithms.

2) Public i2Nav-Robot Dataset: We further evaluate PLPO-
KF on the i2Nav-Robot dataset. Since ORB-SLAM3, PL-VIO,
PL-VINS, and EPLF-VINS do not estimate the camera-IMU
time-delay online, we manually compensated for a constant
delay in the parking01 and parking02 sequences. For the park-
ing00 sequence, which spans indoor and outdoor environments
with variable time delay, we did not apply this compensation

to the parking00 data. In contrast, OpenVINS, VINS-Mono,
and PLPO-KF all perform online delay estimation.

To visually demonstrate the position errors of different
methods, Fig. 10 shows the resulting trajectories aligned to the
ground-truth starting point. In terms of trajectory consistency
with the ground truth, all baseline methods show significant
position and heading deviations to varying degrees. The park-
ing01 and parking02 sequences were captured entirely indoors,
leading to more image blur and fewer reliable features. As
a result, all tested methods, including our proposed PLPO-
KF, exhibit considerable heading deviation after an extended
distance. Since ORB-SLAM3 relies more heavily on visual
information, while the wheeled robot’s dynamics are relatively
weak, it exhibits noticeable scale drift on these sequences.
Particularly, ORB-SLAM3 shows a significant divergence
in the latter part of the parking02 sequence. Addition-
ally, the point-line-based baselines (PL-VIO, PL-VINS, and
EPLF-VINS) still suffer from residual time-delay error,
resulting in larger trajectory deviations than the point-only
VINS-Mono and OpenVINS. As shown in the subplots in
Fig. 10, the endpoints of PLPO-KEF for the three test sequences
are also the closest to the ground truth, further confirming the
superior localization performance of our proposed PLPO-KF.
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Fig. 11. RREs across different trajectory lengths on the i2Nav-Robot dataset.
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Fig. 12. RTEs across different trajectory lengths on the i2Nav-Robot dataset.

TABLE II
ABSOLUTE POSE ERRORS (DEG/M) ON THE ROBOT DATASET

Method parking00 parking01 parking02 RMS
OpenVINS 0.84 /3.30 1.04/3.01 093/3.67 0.94/334
VINS-Mono 1.16 / 4.40 2377211 356/4.18 2567371
ORB-SLAM3 098 /10.85 1.32/12.68 failed -
PL-VIO 1.32/4.68 290/426 397/633 294/517
PL-VINS 1.94 /517 490/552 575/7.80 4.50/6.27
EPLF-VINS 0.95/3.33 339/387 3.73/443 296/ 3.90
PLPO-KF 0.49 / 0.88 0.57/089 132/1.05 0.88/0.94

The point-line-based baselines still exhibit larger deviations
due to residual delay, while the other two point-only methods
(VINS-Mono and OpenVINS) perform better. As illustrated,
PLPO-KF consistently yields trajectories closest to the ground
truth.

Quantitative pose errors on the i2Nav-Robot dataset are
summarized in Figs. 11 and 12, and Table II. Due to the scale
divergence, ORB-SLAM3 shows substantially larger relative
pose errors on this dataset. Therefore, its results are not
included in the relative error box plots to better compare
with other baselines. For relative pose errors in Fig. 11 and
Fig. 12, the proposed PLPO-KF outperforms all baselines
across almost all metrics except for the 5-m RTE of EPLF-
VNS. In terms of absolute pose error in Table II, PLPO-KF
achieves the lowest errors on all sequences except the rotation
error of parking02 sequence. Statistically, PLPO-KF achieves
the smallest absolute pose errors of 0.88deg and 0.94 m,
outperforming all baseline methods.

3) Private HandNav Dataset: We finally evaluate
PLPO-KF on the self-collected HandNav dataset. We also
compensate for the constant camera-IMU time delay in
PL-VIO, PL-VINS, and EPLF-VINS. Fig. 13 shows
trajectories for the hybrid0l sequence, and Fig. 14 presents
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Fig. 13. Resulting trajectories of the HandNav hybrid0l sequence. All
trajectories start from the same point and end at different starts, each shown
in a distinct color.
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Fig. 14. Resulting trajectories of the HandNav roof01 corridorOl and stairO1
sequences. All trajectories start from the same point and end at different
squares, each shown in a distinct color.

resulting trajectories for roof0I, corridor0l, and stairOl
sequences. The images in the HandNav dataset contain
limited texture and exhibit significant motion blur, leading
to frequent tracking failures in ORB-SLAMS3. As a result,
ORB-SLAM3 fails on all hybrid sequences and shows
severe trajectory drift in the corridor and stair sequences.
In addition, due to residual time delay, the three point-line-
based baselines (PL-VIO, PL-VINS, EPLF-VINS) again
show degraded localization results than the point-only
VINS-Mono and OpenVINS. In contrast, the proposed
PLPO-KF obtains trajectories that align most closely with the
ground truth, especially in the sky-blue rectangular area in
Fig. 13. Furthermore, the resulting trajectories of the roof01,
corridorOl, and stairOl sequences in Fig. 14 also show that
the PLPO-KF achieves obviously better trajectory fitness
with the ground truth than all baseline methods. The closest
endpoints with the ground truth in Figs. 13 and 14 further
confirm the superior localization performance of PLPO-KF.
Table III summarizes absolute position errors across all 10
HandNav sequences. PLPO-KF consistently outperforms all
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TABLE III
ABSOLUTE POSITION ERRORS (M) ON THE HANDNAV DATASET
Method stair00  stairOl  corridor00  corridorOl  roof00  roof0l  roof02  hybrid0O  hybridOl1 — hybrid02 ~ RMS
OpenVINS 0.239 0.204 0.275 0.284 0.631 0.509 0.531 0.203 0.421 0.721 0.440
VIINS-Mono 0.220 0.521 0.676 0.557 0.839 0.483 0.682 0.272 0.874 1.019 0.661
ORB-SLAM3 failed 1.901 2.924 2919 failed 0.334 1.425 failed failed failed -
PL-VIO 0.229 0.615 0.841 1.189 1.500 0.752 0.939 0.338 1.758 1.325 1.059
PL-VINS 0.226 0.400 0.731 1.186 1.358 0.767 0.887 0.356 1.406 1.055 0.927
EPLF-VINS 0.294 1.095 0.799 1.904 1.182 0.826 1.036 0.412 0.949 0.940 1.032
PLPO-KF 0.147 0.099 0.328 0.268 0.324 0.180 0.363 0.135 0.324 0.435 0.282
TABLE IV
LINE TRACK PERFORMANCE AND TRIANGULATION RESIDUALS (AVG/CDF95) OF THE TWO LINE TRACKING METHODS
Test Track Rate[%] Track Length Track Parallax Tri. Error[pixel]
LF IE-LF LF IE-LF LF IE-LF LF IE-LF
test00 49 70 5.65/19 7.88 /25 0.12 7 0.48 0.19 / 0.70 1.86 / 3.96 1.87 /7 4.12
testO1 59 73 8.77 /33 8.95 /33 0.1570.63 0.18 7 0.72 1.98 / 4.37 2.00 / 4.44
test02 53 65 6.09 / 17 722122 0.10 7/ 0.41 0.14 / 0.57 1.72 /1 3.72 1.67 / 3.75
RMS 54 69 6.97 /24 8.05 /27 0.1370.52 0.17 /7 0.66 1.86 7/ 4.03 1.85/4.11
100 1 1.00 4 1.00 4
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Fig. 15. Line tracking rate and camera angular speed of the proposed and
baseline line tracking methods.

baseline methods, although it yields a slightly higher error
than OpenVINS on the corridor00 sequence. Statistically,
PLPO-KF achieves an average absolute position error of only
0.282 m, significantly lower than all other baselines.

According to the results across three diverse datasets, the
proposed PLPO-KF consistently achieves superior localization
accuracy compared with both point-only and point-line-based
SOTA VIO methods.

C. Impact of INS-Enhanced Line Tracking

To specifically evaluate the proposed IE-LF tracking algo-
rithm, we collected three sets of dynamically rich test data
using the handheld platform and compared it against the basic
LF algorithm. Line tracking performance is assessed in terms
of frame-to-frame tracking rate, total tracking length, and total
tracking parallax. In addition, since tracking accuracy is as
important as tracking length, we further validate the accuracy
using line feature triangulation residuals.

1) Frame-to-Frame Tracking Rate: The frame-to-frame
tracking rate on the front-testO1 data is shown in Fig. 15, along

with the smoothed carrier angular velocity curve. As expected,
when carrier dynamics increase (i.e., high angular velocity),
the LF algorithm exhibits a sharp drop in tracking success rate,
while the proposed IE-LF algorithm maintains a much higher
level of robustness. The average frame-to-frame tracking rates
across all three datasets are summarized in Table IV. These
results show that incorporating INS prior poses improves the
average tracking success rate from 54% to 69%.

2) Total Tracking Length and Accuracy: We next evaluate
the long-term tracking performance of the proposed IE-LF
algorithm. Taking front-test00 as an example, Fig. 16 shows
the cumulative distribution function (cdf) curves of tracking
length and parallax for both algorithms. The IE-LF consis-
tently achieves longer tracking lengths and larger parallaxes,
as indicated by its cdf curve lying below that of the LF
algorithm. The mean and 95th percentile (CDF95) statistics
of tracking length and parallax are summarized in Table IV.
Across all datasets, IE-LF increases the average tracking
length by approximately 15% and the average tracking parallax
by about 30%.

Finally, we compute the line triangulation residuals of
line features obtained by both IE-LF and LF, with results
also presented in Table IV. The statistical residuals of the
two algorithms are nearly identical, demonstrating that the
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TABLE V
ATES (M) oF THE THREE TEST METHODS (PO-KF, POKF-LM, AND PLPO-KF) ON THE EUROC DATASET
Method MHOI MH02 MHO03 MH04 MHO05 VIi-01 VI-02 VI-03 V2-01 V2-02 V2-03 RMS
PO-KF 0.076 0.153 0.162 0.126 0.312 0.062 0.037  0.095 0.062 0.087 0.208  0.147
POKF-LM  0.074 0.156 0.155 0.125 0.310 0.060 0.042 0.096 0.059  0.084 0.202 0.145
PLPO-KF 0.066 0.178 0.152 0.129 0.278 0.064 0.037  0.082 0.077 0.087 0.210  0.142
TABLE VI
ABSOLUTE AND RELATIVE POSE ERRORS OF THE THREE METHODS (PO-KF/POKF-LM/PLPO-KF) ON THE ROBOT PARKING DATASET
Sequence ARE[deg] RRE([deg] ATE[m] RTE[%]
10m 50m 10m 50m
parking00 0.52/0.54/0.49 0.16/0.16/0.16 027/027/0.26 0.94/0.96/0.88 1.75/1.70/1.44 0.85/0.84 /0.76
parking0l 0.76 /0.77/0.57 0.20/0.20/0.20 038/0.38/0.37 1.32/1.23/0.89 2.14/2.08/1.71 1.05/1.02/0.87
parking02 148 /1.56/132 025/024/022 051/051/049 133/136/1.05 194/192/173 097/0.98/0.95
RMS 1.01/1.05/7088 021/021/019 040/040/038 1.21/1.20/0.94 195/191/1.63 0.96/0.95/0.86
——okF than the traditional MSCKF-based line-feature measurement
— PLPOKF model.
£ 06 2) Public i2Nav-Robot Dataset: We then evaluate the three
5 h methods on the i2Nav-Robot dataset, with absolute and relative
5 0.4 \ . .
Lg ‘ } , pose errors presented in Table VI. For clarity, only the 10-
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Fig. 17. 10-m relative position error on the parking01 sequence.

proposed IE-LF does not sacrifice tracking accuracy for
enhanced tracking robustness and tracking length.

D. Impact of the Pose-Only Line-Feature Model

In this section, we specifically evaluate the proposed trifocal
tensor-based pose-only line-feature measurement model. Our
previous work, PO-KF, serves as the baseline to assess the
contribution of line features. We also implement an MSCKF-
based line-feature measurement model on top of PO-KF,
denoted as POKF-LM, to benchmark against the proposed
pose-only line-feature measurement model. The evaluation is
also conducted on the EuRoC, i2Nav-Robot, and HandNav
datasets, and performance is assessed in terms of localization
accuracy. For a fair comparison, PO-KF, POKF-LM, and
PLPO-KF share identical system parameters.

1) Public EuRoC Dataset: We first evaluate the line mea-
surement models on the EuRoC dataset. The absolute position
errors of PO-KF, POKF-LM, and PLPO-KF on the EuRoC
dataset are summarized in Table V. Across the 11 sequences,
both POKF-LM and PLPO-KF achieve better position accu-
racy on more sequences compared with PO-KF, confirming
the contribution of line features to localization accuracy.
Furthermore, the comparison between POKF-LM and PLPO-
KF shows that PLPO-KF consistently outperforms POKF-LM,
highlighting that the proposed pose-only line-feature measure-
ment model provides greater benefits for localization accuracy

surements of PLPO-KF with both point and line features. To
illustrate this improvement, we present the 10-m relative posi-
tion error of parking01 in Fig. 17, where PLPO-KF achieves
lower errors than PO-KF throughout most of the sequence. In
addition, the insufficient line parallax in wheeled robots will
lead to more triangulation failures and poor line triangulation
accuracy, resulting in the MSCKF-based POKF-LM does not
always outperforming PO-KF. In contrast, PLPO-KF adap-
tively selects three frames with enough parallax to formulate
a pose-only line-feature measurement model, ensuring reliable
line updates and consistently improving localization accuracy.
The comparison between PLPO-KF and POKF-LM clearly
demonstrates the superiority of the proposed pose-only line-
feature model over the traditional MSCKF-based model.

3) Private HandNav Dataset: Finally, we evaluate the three
methods on the HandNav dataset. The absolute position errors
are summarized in Table VII. Across the ten sequences, both
PLPO-KF and POKF-LM consistently achieve lower position
errors than PO-KF. This further validates the contribution
of line features to localization accuracy. Notably, PLPO-KF
achieves particularly significant improvements over PO-KF in
the hybrid0l and hybrid02 sequences, which involve larger
trajectory ranges that better showcase the benefits of the pose-
only line-feature measurement model. In contrast, the hybrid00
sequence exhibits only marginal improvements due to its lim-
ited trajectory range spanning just two floors. Quantitatively,
PLPO-KF reduces the position error of PO-KF from 0.330 to
0.282 m. Moreover, when compared with POKF-LM, PLPO-
KF consistently achieves higher accuracy across all sequences,
confirming the superior performance of the proposed trifocal
tensor-based pose-only line-feature measurement model.
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TABLE VII
ABSOLUTE POSITION ERRORS (M) OF THE LINE MEASUREMENT MODEL TEST ON THE HANDNAV DATASET

Method stair00  stairOl  corridor00  corridorOl  roof00  roof01  roof02  hybrid0O  hybrid0l  hybrid02 ~ RMS

PO-KF 0.173 0.164 0.426 0.282 0.329 0.203 0.390 0.154 0414 0.522 0.330

POKF-LM  0.164 0.143 0.419 0.275 0.331 0.201 0.389 0.148 0.373 0.505 0.319

PLPO-KF 0.147 0.099 0.328 0.268 0.324 0.180 0.363 0.135 0.324 0.435 0.282
TABLE VIII From the runtime results, we first observe that the filter-

AVERAGE RUNTIMES PER FRAME (MS) ON THE HANDNAV DATASET

Method Point Track  Line Track  Prop.&Update  Total
OpenVINS 3.17 - 1.14 4.31
VINS-Mono 11.24 - 11.78 23.02
ORB-SLAM3 - - - 46.48

PO-KF 5.95 - 0.66 6.61
PL-VIO 11.04 66.81 13.46 93.31
PL-VINS 11.65 18.32 13.39 43.36
EPLF-VINS 12.37 11.06 13.95 37.38
PLPO-KF 5.93 11.43 0.83 18.19

Track includes extraction and association; Prop. denotes IMU propagation.

4) Discussion on Limitations of Line Features: Although
the above evaluations demonstrate the advantages of incor-
porating line features, several inherent limitations should be
acknowledged. In extremely textureless, motion-blurred, or
low-light environments, line features may become sparse and
unreliable, thereby reducing their contribution to the overall
localization accuracy. In addition, certain degenerate motions
or scene geometries, for instance, pure forward motion in
very long and straight corridors, can make line features poorly
observable. This loss of observability may weaken the geomet-
ric constraints, leading to degraded pose estimation accuracy
or even potential filter divergence.

Based on these observations and our practical experience,
line features should be regarded as a complementary modality
rather than a complete replacement for point features, even
when outlier rejection and degeneration—detection strategies
are employed. Their benefits are most pronounced in environ-
ments with structural information.

E. Runtime Analysis

We further evaluate the computational efficiency of the pro-
posed PLPO-KF through a runtime analysis. All methods are
tested on the HandNav dataset using a desktop PC equipped
with an AMD R7950X CPU and 32 GB of RAM. The average
processing times of the key modules per frame are summarized
in Table VIII. For clarity, the processing times of point and line
features are reported separately. The runtimes of IMU prop-
agation and state update are combined, since preintegration
factors and visual measurement factors are jointly optimized
in the optimization-based methods. ORB-SLAM3 performs
two pose optimizations (initial pose estimation for each frame
and local mapping optimization for keyframes), so we report
only its total runtime per frame. In addition, the runtime
of ORB-SLAM3 is averaged over five sequences, while the
results of the other methods are averaged over all ten HandNav
sequences.

based point-only methods (OpenVINS and PO-KF) achieve
the highest computational efficiency. PO-KF shows a slightly
higher runtime than OpenVINS due to differences in point-
feature types and the number of tracked features. In contrast,
the optimization-based point-only methods (VINS-Mono and
ORB-SLAM3) incur substantially higher computational cost
as a result of their iterative optimization procedures. Due
to line extraction and tracking, the point-line-based methods
generally require more computation. For example, the addi-
tional runtime of PLPO-KF compared with PO-KF also mainly
comes from line processing.

The runtime of line tracking is variable among different
point-line-based methods. PL-VIO employs an LSD-based line
tracker, leading to the highest runtime overhead. Although
PL-VINS improves the efficiency of LSD-based tracking, its
line-processing cost remains considerably higher than the
optical-flow-based line tracking used in EPLF-VINS and in
our PLPO-KF. The INS-enhanced line tracking in PLPO-KF
makes only a slight increase in line tracking time compared
with EPLF-VINS. In addition, the estimation methods also
notably impact the system runtime. Specifically, due to the
filter-based framework, PLPO-KF retains significantly lower
propagation and state update time than the optimization-based
approaches. In general, these module-level runtimes clearly
illustrate the high effectiveness of combining a filter-based
estimation framework with efficient optical-flow-based line
tracking.

Overall, PLPO-KF achieves a lower per-frame runtime
than all baseline methods except the filter-based point-
only approaches. Compared with the SOTA point-line-based
methods, PLPO-KF demonstrates a substantially lower com-
putational cost, confirming its superior efficiency.

In summary of the above experiments, the results demon-
strate that PLPO-KF outperforms both point-based and
point-line-based SOTA VIO methods, validate the effective-
ness of the proposed IE-LF tracking algorithm and the trifocal
tensor-based pose-only line-feature measurement model, as
well as verify the superior computational efficiency of
PLPO-KF than SOTA point-line-based methods.

VIII. CONCLUSION

In this paper, we propose PLPO-KF, a unified pose-only
representation-based Kalman filter with point-line features for
VIO, by integrating an INS-enhanced line tracking method
and a trifocal tensor-based pose-only line-feature measurement
model into our previous PO-KF framework. The proposed
INS-enhanced line tracking leverages INS prior poses to
provide reliable initial values, ensuring stable and accurate
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line tracking. Meanwhile, the trifocal tensor-based pose-only
line-feature measurement model offers a more concise and
effective formulation compared with conventional models.
Extensive evaluations on three diverse datasets demon-
strate that PLPO-KF achieves superior localization accuracy
over SOTA point-based and point-line-based VIO systems,
including OpenVINS, VINS-Mono, ORB-SLAM3, PL-VIO,
PL-VINS, and EPLF-VINS. Additional experiments further
validate the robustness of the proposed IE-LF tracking method,
the effectiveness of the trifocal tensor-based pose-only line-
feature measurement model, and the superior computational
efficiency of the proposed PLPO-KF.

In future work, we plan to investigate learning-based
approaches for more accurate line detection and track-
ing, extend the proposed pose-only line-feature measurement
model toward efficient visual line mapping, and further explore
leveraging line-feature maps for absolute visual localization.
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