学术论文

发布时间:[2023-09-28] 来源:[武汉大学多源智能导航实验室] 点击量:[26751]

     - 2023                                                                                                                                                                                       

1. Zhang Q, Lin H, Ding L, et al. RANSAC-Based Fault Detection and Exclusion Algorithm for Single-Difference Tightly Coupled GNSS/INS Integration. IEEE Transactions on Intelligent Vehicles. 2023.  [PDF]

2.Tang H, Zhang T, Niu X, et al. FF-LINS: A Consistent Frame-to-Frame Solid-State-LiDAR-Inertial State Estimator. IEEE Robotics and Automation Letters. 2023.  [PDF]

3.Zhang T, Shi J, Lin T, et al. GNSS position-aided delay-locked loops for accurate urban navigation. GPS Solutions. 2023.  [PDF]

4.Zhang T, Wei L, Kuang J, et al. Mag-ODO: Motion Speed Estimation for Indoor Robots Based on Dual Magnetometers. Measurement. 2023.  [PDF]

5. Fan, T. W., Zhang, T. S., Zhang, H. P. et al. A double sideband combined tracking method for Galileo E5 AltBOC signals. Satellite Navigation. 2023.  [PDF]

6.Liu T, Kuang J, Niu X. An iterative method for the distance constraints in a multi-sensor positioning system. IEEE Transactions on Vehicular Technology. 2023.  [PDF]

7. Kuang J, Xia D, Liu T, et al. Shin-INS: A Shin-Mounted IMU-based Inertial Navigation System for Pedestrian. IEEE Sensors Journal. 2023.   [PDF]

8. Wang Y, Kuang J, Liu T, et al. CrowdMagMap: Crowdsourcing based Magnetic Map Construction for Shopping Mall. IEEE Internet of Things Journal. 2023.  [PDF]

9. Liu T, Kuang J, Li Y, et al. A Novel Minimum Distance Constraint Method Enhanced Dual-Foot-Mounted Inertial Navigation System for Pedestrian Positioning. IEEE Internet of Things Journal. 2023.  [PDF]

10.Lai, C., Guo, R., Chen, Q., & Niu, X. Extending the real-time kinematics survey method to global navigation satellite system-denied areas using a low-cost inertial-aided positioning pole. NAVIGATION. 2023.  [PDF]

11.Chen Qijin, Huan Lin, Jian Kuang, Yarong Luo, Xiaoji Niu. Rapid Initial Heading Alignment for MEMS Land Vehicular GNSS/INS Navigation System.  IEEE Sensors Journal. 2023.  [PDF]

12.Feng, X., Zhang, T., Niu, X., Pany, T., & Liu, J.Improving GNSS carrier phase tracking using a long coherent integration architecture. 
GPS Solutions.2023.  [
PDF]

13.X. Niu, Y. Peng, Y. Dai, Q. Chen, C. Guo and Q. Zhang. Camera-Based Lane-Aided Multi-Information Integration for Land Vehicle Navigation. IEEE/ASME Transactions on Mechatronics. 2023.  [PDF]

14.X. Niu., Y. Dai., T. Liu. et al. Feature-based GNSS positioning error consistency optimization for GNSS/INS integrated system. GPS Solution.2023.   [PDF]

15.Hailiang Tang, Xiaoji Niu, Tisheng Zhang, Liqiang Wang, and Jingnan Liu. LE-VINS: A Robust Solid-State-LiDAR-Enhanced Visual-Inertial Navigation System for Low-Speed Robts.  IEEE Transactions on Instrumentation and Measurement, 2023. [PDF]

     - 2022                                                                                                                                                                                       

1.Zhang T, Liu S, Chen Q, et al. Carrier-Phase-Based Initial Heading Alignment for Land Vehicular MEMS GNSS/INS Navigation System. IEEE Transactions on Instrumentation and Measurement. 2022.  [PDF]

2.Kuang J, Li T, Chen Q, et al. Consumer-Grade Inertial Measurement Units Enhanced Indoor Magnetic Field Matching Positioning Scheme. IEEE Transactions on Instrumentation and Measurement. 2022.  [PDF]

3.Wu Y, Kuang J, Niu X. Wheel-INS2: Multiple MEMS IMU-Based Dead Reckoning System With Different Configurations for Wheeled Robots. IEEE Transactions on Intelligent Transportation Systems, 2022.  [PDF]

4.Y. Wu, J. Kuang*, X. Niu, J. Behley, L. Klingbeil and H. Kuhlmann. Wheel-SLAM: Simultaneous Localization and Terrain Mapping Using One Wheel-mounted IMU.  IEEE Robotics and Automation Letters, 2022, doi: 10.1109/LRA.2022.3226071.  [PDF]

5. X. Niu, H. Tang, T. Zhang, J. Fan, and J. Liu. IC-GVINS: A Robust, Real-Time, INS-Centric GNSS-Visual-Inertial Navigation System.  IEEE Robotics and Automation Letters, vol. 8, no. 1, pp. 216–223, Jan. 2023. doi: 10.1109/LRA.2022.3224367.  [PDF]

6.Wang Y, Kuang J, Niu X, et al. LLIO: Lightweight Learned Inertial Odometer. IEEE Internet of Things Journal. 2022.  [PDF]

7.Wang L, Niu X, Zhang T, et al. Accuracy and Robustness of ODO/NHC Measurement Models for Wheeled Robot Positioning. Measurement. 2022: 111720.  [PDF]

8.Tang Hailiang, Zhang Tisheng, Niu Xiaoji, Fan Jing, Liu Jingnan. Impact of the Earth Rotation Compensation on MEMS-IMU Preintegration of Factor Graph Optimization. IEEE Sensors Journal. 2022.  [PDF]

9.Wang Y, Kuang J, Li Y, Niu X. Magnetic Field-Enhanced Learning Based Inertial Odometry for Indoor Pedestrian. IEEE Transactions on Instrumentation and Measurement. 2022 Jun 27.  [PDF]

10.Niu X, Wang Y, Kuang J. A pedestrian POS for indoor Mobile Mapping System based on foot-mounted visual-inertial sensors. Measurement. 2022 Jun 30:111559.  [PDF]

11.Zhou Y, Chen Q, Wang R, et al. Onboard Train Localization Based on Railway Track Irregularity Matching. IEEE Transactions on Instrumentation and Measurement, 2022.   [PDF]

12.Chen Q, Zhou Y, Fang B, et al. Experimental Study on the Potential of Vehicle's Attitude Response to Railway Track Irregularity in Precise Train Localization. IEEE Transactions on Intelligent Transportation Systems, 2022.  [PDF]

13.Hailiang Tang, Xiaoji Niu, Tisheng Zhang, YouLi, and Jingnan Liu. OdoNet: Untethered Speed Aiding for  Vehicle NavigationWithout Hardware Wheeled Odometer.  IEEE Sensors Journal, pp. 1–1, 2022.  [PDF]

     - 2021                                                                                                                                                                                       

1.Q. Zhang, Y. Hu, S. Li, T. Zhang, and X. Niu. Mounting parameter estimation from velocity vector observations for land vehicle navigation. IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 4234-4244. 2021.  [PDF]

2.Chen Q, Zhang Q, Niu X, et al. Semi-analytical assessment of the relative accuracy of the GNSS/INS in railway track irregularity measurements. Satellite Navigation, 2021, 2(1): 1-16.  [PDF]

3.牛小骥,丁龙阳,旷俭,吴宜斌.基于MEMS IMU和运动约束的共享单车定位算法.中国惯性技术学报,2021,29(03):300-306.  [PDF]

4. 旷俭等. 基于手机内置传感器的车辆组合定位方法. 中国惯性技术学报, 2020. 28(06): 第701-708页.  [ PDF]

5.李泰宇, 旷俭与牛小骥. 基于磁强计阵列的室内行人定位算法研究. 传感技术学报. 2020. 33(10): 第1425-1431页.  [PDF]

6.Kuang J, Li T, Niu X. Magnetometer bias insensitive magnetic field matching based on pedestrian dead reckoning for smartphone indoor positioning[J]. IEEE Sensors Journal, 2021.  [PDF]

7.Kuang J, Li T, Niu X. An Efficient and Robust Indoor Magnetic Field Matching Positioning Solution Based on Consumer-Grade IMUs for Smartphones.China Satellite Navigation Conference (CSNC 2021) Proceedings. Springer, Singapore, 2021: 535-545. [PDF]

8.L. Wang, H. Tang, T. Zhang, Q. Chen, J. Shi and X. Niu.Improving the Navigation Performance of the MEMS IMU Array by Precise Calibration. IEEE Sensors Journal, vol. 21, no. 22, pp. 26050-26058, 15 Nov.15, 2021.  DOI: 10.1109/JSEN.2021.3118455.  [PDF]

9.C. Lai, R. Guo.  Extend the RTK survey to GNSS-denied areas using a low-cost inertial-aided  positioning pole[C].  ION GNSS+ 2021,  St. Louis, Missouri.  [PDF]

10.Huan Lin. High-precision  RTK  Positioning  with  Tilt  Compensation:  Data  Fusion  Algorithm[C].  ION GNSS+ 2021,  St. Louis, Missouri.  [PDF]

11.X. Niu, T. Liu, J. Kuang, Q. Zhang and C. Guo. Pedestrian trajectory estimation based on foot-mounted inertial navigation system for multistory buildings in post-processing mode.   IEEE Internet of Things Journal. DOI: 10.1109/JIOT.2021.3113398.  [PDF]

12.Y. Wu, X. Niu and J. Kuang. A Comparison of Three Measurement Models for the Wheel-mounted  MEMS IMU-based Dead Reckoning System. IEEE Transactions on Vehicular Technology.  DOI: 10.1109/TVT.2021.3102409.  [PDF]

13.Niu, Y. Wu and J. Kuang. Wheel-INS: A Wheel-mounted MEMS IMU-based Dead Reckoning System. IEEE Transactions on Vehicular Technology.DOI: 10.1109/TVT.2021.3108008.  [PDF]

14.Zaixing Zhang, Xiaoji Niu, Hailiang Tang, Qijin Chen, Tisheng Zhang*.  GNSS/INS/ODO/wheel angle integrated navigation algorithm for an all-wheel steering robot.  Measurement Science and Technology. DOI: 10.1088/1361-6501/ac17fb.  [PDF]

     - 2020                                                                                                                                                                                       

1.Feng, X., Zhang, T., Lin, T., Tang, H., & Niu, X. (2020). Implementation AND Performance of a Deeply-Coupled GNSS Receiver WITH Low-Cost MEMS Inertial Sensors FOR Vehicle Urban Navigation. Sensors, 20(12), 3397. https://doi.org/10.3390/s20123397

2.Chang, L.; Niu, X.; Liu, T. GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration. Sensors 2020, 20, 4702. https://doi.org/10.3390/s20174702

3.Geng, J., Wen, Q., Zhang, T., & Li, C. (2020). Strong‐Motion Seismogeodesy by Deeply Coupling GNSS Receivers with Inertial Measurement Units. Geophysical Research Letters, 47(8), e2020GL087161. https://doi.org/10.1029/2020GL08716

4.Chen, Q., Lin, H., Guo, R., & Niu, X. (2020). Rapid and accurate initial alignment of the low-cost MEMS IMU chip dedicated for tilted RTK receiver. GPS Solutions, 24: 119. https://doi.org/10.1007/s10291-020-01032-8

5.Jiang, J., Niu, X., & Liu, J. (2020). Improved IMU Preintegration with Gravity Change and Earth     Rotation for Optimization-Based GNSS/VINS. Remote Sensing, 12(18), 3048. https://doi.org/10.3390/rs12183048

6.Zhang, Q., Li, S., Xu, Z., & Niu, X. (2020). Velocity-Based Optimization-Based Alignment (VBOBA) of Low-End MEMS IMU/GNSS for Low Dynamic Applications. IEEE Sensors Journal, 20(10), 5527-5539. https://doi.org/10.1109/JSEN.2020.2970277

7.Zhang, Q., Chen, Q., Xu, Z., Zhang, T., & Niu, X. (2020). Evaluating the navigation performance of multi-information integration based on low-end inertial sensors for precision agriculture. Precision Agriculture. https://doi.org/10.1007/s11119-020-09747-x

8.Zhang, Q., Niu, X., & Shi, C. (2020). Impact Assessment of Various IMU Error Sources on the Relative Accuracy of the GNSS/INS Systems. IEEE Sensors Journal, 20(9), 5026-5038. https://doi.org/10.1109/JSEN.2020.2966379

9.Zhang, Q., Hu Y. & Niu, X. (2020). Required Lever Arm Accuracy of Non-Holonomic Constraint for Land Vehicle Navigation. IEEE Transactions on Vehicular Technology, 69(8): 8305-8316. https://doi.org/10.1109/TVT.2020.2995076

10.Liu T., Kuang J., Ge W., Zhang P., & Niu X.. (2020). A simple positioning system for large-scale indoor patrol inspection using foot-mounted INS, QR code control points, and smartphone. IEEE Sensors Journal (Early Access). https://doi.org/10.1109/JSEN.2020.3030934

11.Niu X., Liu T., Kuang J. & Li Y. (2020). A Novel Position and Orientation System for Pedestrian Indoor Mobile Mapping System. IEEE Sensors Journal (Early Access).https://doi.org/10.1109/JSEN.2020.3017235

12.Liu T., Niu X., Kuang J., Cao S., Zhang L. & Chen X. (2020). Doppler shift mitigation in acoustic positioning based on pedestrian dead reckoning for smartphone. IEEE Transactions on Instrumentation and Measurement (Early Access).https://doi.org/10.1109/TIM.2020.3010384

13.Chen Q., Zhang Q. & Niu X. (2020). Estimate the Pitch and Heading Mounting Angles of the IMU for Land Vehicular GNSS/INS Integrated System. IEEE Transactions on Intelligent Transportation Systems (Early Access). https://doi.org/10.1109/TITS.2020.2993052

     - 2019                                                                                                                                                                                       

1.Y. Wu, X. Niu, J. Du, L. Chang, H. Tang, and H. Zhang.(2019).“Artificial Marker and MEMS IMU-Based Pose Estimation Method to Meet Multirotor UAV Landing Requirements,” Sensors, vol. 19, no. 24, p. 5428. https://doi.org/10.3390/s19245428

2.Jiang, J., Niu, X., Guo, R., & Liu, J. (2019). A hybrid sliding window optimizer for tightly-coupled vision-aided inertial navigation system. Sensors, 19(15), 3418. https://doi.org/10.3390/s19153418

3.Chang, L., Niu, X., Liu, T., Tang, J., & Qian, C. (2019). GNSS/INS/LiDAR-SLAM Integrated Navigation System Based on Graph Optimization. Remote Sensing, 11(9), 1009. https://doi.org/10.3390/rs11091009

4.Guo, W., Song, W., Niu, X., Lou, Y., Gu, S., Zhang, S., & Shi, C. (2019). Foundation and performance evaluation of real-time GNSS high-precision one-way timing system. GPS Solutions, 23(1), 23. https://doi.org/10.1007/s10291-018-0811-1

5.Lei, Y., Tan, J., Guo, W., Cui, J., & Liu, J. (2019). Time-Domain Evaluation Method for Clock Frequency Stability Based on Precise Point Positioning. IEEE Access, 7, 132413-132422. https://doi.org/10.1109/ACCESS.2019.2940515

6.Zhang, Q., Chen, Q., Niu, X., & Shi, C. (2019). Requirement assessment of the relative spatial accuracy of a motion-constrained GNSS/INS in shortwave track irregularity measurement. Sensors, 19(23), 5296.https://doi.org/10.3390/s19235296

7.Zhang, Q., Niu, X., & Shi, C. (2019). Assessment of the effect of GNSS sampling rate on GNSS/INS relative accuracy on different time scales for precision measurements. Measurement, 145, 583-593. https://doi.org/10.1016/j.measurement.2019.05.104

8.Zhou, Y., Chen, Q., & Niu, X. (2019). Kinematic Measurement of the Railway Track Centerline Position by GNSS/INS/Odometer Integration. IEEE Access, 7, 157241-157253. https://doi.org/10.1109/ACCESS.2019.2946981

9.Chen, Q., Zhang, Q., Niu, X., & Wang, Y. (2019). Positioning accuracy of a pipeline surveying system based on MEMS IMU and odometer: Case study. IEEE access, 7, 104453-104461. https://doi.org/10.1109/ACCESS.2019.2931748

10.Chen, Q., Niu, X., Kuang, J., & Liu, J. (2019). IMU Mounting Angle Calibration for Pipeline Surveying Apparatus. IEEE Transactions on Instrumentation and Measurement, 69(4), 1765-1774. https://doi.org/10.1109/TIM.2019.2917980

11.Niu, X., Li, Y., Kuang, J., & Zhang, P. (2019). Data fusion of dual foot-mounted IMU for pedestrian navigation. IEEE Sensors Journal, 19(12), 4577-4584. https://doi.org/10.1109/JSEN.2019.2902422

12.Li, Z., Zhang, T., Qi, F., Tang, H., & Niu, X. (2019). Carrier phase prediction method for GNSS precise positioning in challenging environment. Advances in Space Research, 63(7), 2164-2174. https://doi.org/10.1016/j.asr.2018.12.015

13.Zhang Q, Niu X. (2019). Importance and Evaluation of Short-term Accuracy of GNSS/INS System in LiDAR-based Mobile Mapping. 11th International Conference on Mobile Mapping Technology (MMT)

14.谭俊雄, 郭文飞, 胡宁松, & 牛小骥. (2019). 利用精密单点定位技术评估晶振频率稳定度. 电讯技术, 59(5). https://doi.org/10.3969/j.issn.1001-893x.2019.05.019

     - 2018                                                                                                                                                                                       

1.Kuang, J., Niu, X., Zhang, P., & Chen, X. (2018). Indoor positioning based on pedestrian dead reckoning and magnetic field matching for smartphones. Sensors, 18(12), 4142. https://doi.org/10.3390/s18124142

2.Peng, Y., Niu, X., Tang, J., Mao, D., & Qian, C. (2018). Fast signals of opportunity fingerprint database maintenance with autonomous unmanned ground vehicle for indoor positioning. Sensors, 18(10), 3419. https://doi.org/10.3390/s18103419

3.Niu, X., Wu, J., & Zhang, Q. (2018). Research on Measurement Error Model of GNSS/INS Integration Based on Consistency Analysis. Gyroscopy and Navigation, 9(4), 243-254. https://doi.org/10.1134/S2075108718040053

4.Kuang, J., Niu, X., & Chen, X. (2018). Robust pedestrian dead reckoning based on MEMS-IMU for smartphones. Sensors, 18(5), 1391. https://doi.org/10.3390/s18051391

5.Chen, Q., Niu, X., Zuo, L., Zhang, T., Xiao, F., Liu, Y., & Liu, J. (2018). A railway track geometry measuring trolley system based on aided INS. Sensors, 18(2), 538. https://doi.org/10.3390/s18020538

6.陈映秋, 旷俭, 牛小骥, 李由, 高柯夫, & 刘经南. (2018). 基于车轮安装惯性测量单元的车载组合导航. 中国惯性技术学报, 26(6). https://doi.org/10.13695/j.cnki.12-1222/o3.2018.06.016

7.祁发瑞, 张提升, 李卓, & 唐海亮. (2018). 一种改善 GNSS 弱信号动态跟踪性能的FFT鉴频方法. 航空学报, (8), 17. https://doi.org/10.7527/S1000-6893.2018.21932

8.Zhang, Q., & Niu, X. (2018, April). Research on accuracy enhancement of low-cost MEMS INS/GNSS integration for land vehicle navigation. In 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS) (pp. 891-898). IEEE. https://doi.org/10.1109/PLANS.2018.8373467

     - 2017                                                                                                                                                                                       

1.Ban, Y., Niu, X., Zhang, T., Zhang, Q., & Liu, J. (2017). Modeling and quantitative analysis of GNSS/INS deep integration tracking loops in high dynamics. Micromachines, 8(9), 272. https://doi.org/10.3390/mi8090272

2.Niu, X., Yu, T., Tang, J., & Chang, L. (2017). An Online Solution of LiDAR Scan Matching Aided Inertial Navigation System for Indoor Mobile Mapping. Mobile Information Systems, ID 4802159. https://doi.org/10.1155/2017/4802159

3.Zhang, T., Ban, Y., Niu, X., Guo, W., & Liu, J. (2017). Improving the design of MEMS INS-aided PLLs for GNSS carrier phase measurement under high dynamics. Micromachines, 8(5), 135. https://doi.org/10.3390/mi8050135

4.Zhang, T., Liu, H., Chen, Q., Zhang, H., & Niu, X. (2017). Improvement of GNSS Carrier Phase Accuracy Using MEMS Accelerometer-Aided Phase-Locked Loops for Earthquake Monitoring. Micromachines, 8(6), 191. https://doi.org/10.3390/mi8060191

5.Yan, K., Zhang, T., Niu, X., Zhang, H., Zhang, P., & Liu, J. (2017). INS-aided tracking with FFT frequency discriminator for weak GPS signal under dynamic environments. GPS Solutions, 21(3), 917-926. https://doi.org/10.1007/s10291-016-0579-0

6.Guo, W., Niu, X., Guo, C., & Cui, J. (2017). A new FFT acquisition scheme based on partial matched filter in GNSS receivers for harsh environments. Aerospace Science and Technology, 61, 66-72. https://doi.org/10.1016/j.ast.2016.11.017

7.Niu, X., Li, B., Ziedan, N. I., Guo, W., & Liu, J. (2017). Analytical and simulation-based comparison between traditional and Kalman filter-based phase-locked loops. GPS solutions, 21(1), 123-135. https://doi.org/10.1007/s10291-015-0509-6

8.Xu, L., Ziedan, N. I., Niu, X., & Guo, W. (2017). Correlation acceleration in GNSS software receivers using a CUDA-enabled GPU. GPS solutions, 21(1), 225-236. https://doi.org/10.1007/s10291-016-0516-2

9.Qijin Chen, Xiaoji Niu (2017), Modern Tramway Track Geometric Quality Inspection by Aided INS, The 10th International Symposium on Mobile Mapping Technology, MMT2017, May 6-8, 2017, Cairo, Egypt.

10.Li, B., Guo, W., Niu, X., Ziedan, N. I., & Liu, J. (2017, May). Parameters Design Method of Kalman Filter-Based Tracking Loop in GNSS/INS Deep Integration. In China Satellite Navigation Conference (pp. 933-943). Springer, Singapore. https://doi.org/10.1007/978-981-10-4588-2_79

11.Li, B., Guo, W., Niu, X., Ziedan, N. I., & Liu, J. (2017, May). Parameters Design Method of Kalman Filter-Based Tracking Loop in GNSS/INS Deep Integration. In China Satellite Navigation Conference (pp. 933-943). Springer, Singapore. https://doi.org/10.1007/978-981-10-4588-2_79

     - 2016                                                                                                                                                                                       

1.Niu, X., Wang, Q., Li, Y., Zhang, Q., & Jiang, P. (2016). An IMU evaluation method using a signal grafting scheme. Sensors, 16(6), 854. https://doi.org/10.3390/s16060854

2.Yan, K., Ziedan, N. I., Zhang, H., Guo, W., Niu, X., & Liu, J. (2016). Weak GPS signal tracking using FFT discriminator in open loop receiver. GPS solutions, 20(2), 225-237. https://doi.org/10.1007/s10291-014-0431-3

3.Wang, Q., Li, Y., & Niu, X. (2016). Thermal calibration procedure and thermal characterisation of low-cost inertial measurement units. The Journal of Navigation, 69(2), 373-390. https://doi.org/10.1017/S0373463315000600

4.Niu, X., Chen, Q., Kuang, J., & Liu, J. (2016, April). Return of inertial surveying—Trend or illusion?. In 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS) (pp. 165-169). IEEE. https://doi.org/10.1109/PLANS.2016.7479697

5.牛小骥, 班亚龙, 张提升, & 刘经南. (2016). GNSS/INS 深组合技术研究进展与展望. 航空学报, 37(10), 2895-2908. https://doi.org/10.7527/S1000-6893.2015.0351

6.牛小骥, 旷俭, & 陈起金. (2016). 采用 MEMS 惯导的小口径管道内检测定位方案可行性研究. 传感技术学报, 29(1), 40-44. https://doi.org/10.3969/j.issn.1004-1699.2016.01.008

     - 2015                                                                                                                                                                                       

1.Zhang, T., Zhang, H., Lin, T., Yan, K., & Niu, X. (2016). Modeling and verifying the impact of time delay on INS-aided GNSS PLLs. Gps Solutions, 20(4), 725-736. https://doi.org/10.1007/s10291-015-0484-y

2.Zhang, T., Niu, X., Ban, Y., Zhang, H., Shi, C., & Liu, J. (2015).   Modeling  and  development  of INS-aided PLLs in a GNSS/INS deeply-coupled hardware prototype for dynamic applications. Sensors, 15(1), 733-759. https://doi.org/10.3390/s150100733

3.Niu, X., Ban, Y., Zhang, Q., Zhang, T., Zhang, H., & Liu, J. (2015). Quantitative analysis to the impacts of IMU quality in GPS/INS deep integration. Micromachines, 6(8), 1082-1099. https://doi.org/10.3390/mi6081082

4.Niu, X., Yan, K., Zhang, T., Zhang, Q., Zhang, H., & Liu, J. (2015). Quality evaluation of the pulse per second (PPS) signals from commercial GNSS receivers. GPS solutions, 19(1), 141-150. https://doi.org/10.1007/s10291-014-0375-7

5.Niu, X. J., Zhang, Q., Gong, L. L., Liu, C., Zhang, H., Shi, C., ... & Coleman, M. (2015).  Development  and  evaluation of GNSS/INS data processing software for position and orientation systems. Survey Review, 47(341), 87-98. https://doi.org/10.1179/1752270614Y.0000000099

6.Guo, C., Guo, W., Cao, G., & Dong, H. (2015). A lane-level LBS system for vehicle network with high-precision BDS/GPS positioning. Computational intelligence and neuroscience, 2015. https://doi.org/10.1155/2015/531321

7.Chen, Q., Niu, X., Zhang, Q. and Cheng, Y.  (2015),  Railway  Track   Irregularity Measuring by GNSS/INS Integration. Journal of the Institute of Navigation, 62: 83– 93. https://doi.org/10.1002/navi.78

8.Li, Q., Ban, Y., Niu, X., Zhang, Q., Gong, L., & Liu, J. (2015). Efficiency improvement of kalman filter for gnss/ins through one-step prediction of matrix. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/109267

9.Li, Y., Niu, X., Cheng, Y., Shi, C., & El-Sheimy, N. (2015). The Impact of Vehicle Maneuvers on the Attitude Estimation of GNSS/INS for Mobile Mapping. Journal of Applied Geodesy, 9(3), 183-197. https://doi.org/10.1515/jag-2015-0002

10.Niu, X., Wang, Q., Li, Y., Li, Q., & Liu, J. (2015). Using inertial sensors in smartphones for curriculum experiments of inertial navigation technology. Education Sciences, 5(1), 26-46. https://doi.org/10.3390/educsci5010026

11.Guo, W., Lin, T., Niu, X., Shi, C., & Zhang, H. (2015). Design and Performance Evaluation of a Dual Antenna Joint Carrier Tracking Loop. Sensors, 15(10), 25399-25415. https://doi.org/10.3390/s151025399

12.牛小骥, 王强, 李由, & 唐健. (2015). 利用伪观测取代精密转台的原地旋转调制寻北. 中国惯性技术学报, 23(6), 707-713. https://doi.org/10.13695/j.cnki.12-1222/o3.2015.06.002

13.严昆仑, 章红平, 张提升, & 牛小骥. (2015). NH 码对新一代 GNSS 信号捕获跟踪的影响. 武汉大学学报 (信息科学版), 40(5), 682-687. https://doi.org/10.13203/j.whugis20130374

14.刘郑, 郑建生, 雷莉, & 郭文飞.  (2015).   一种基于对数似然比的解扩方法.    北京理工大学学报,      35(4), 427-431. https://doi.org/10.15918/j.tbit1001-0645.2015.04.018

15.张辉, 牛小骥, 郭文飞, 翟冰, 罗国军, & 王青江. (2015). 一种简易通用的敲击触发式惯性导航系统时间同步装置设计. 传感技术学报, 28(1), 13-18. https://doi.org/10.3969 /j.issn.1004-1699.2015.01.003

16.Li, Y., Niu, X., Zhang, P., Lan, H., Zhuang, Y., & El-Sheimy, N. (2015, September). Smartphone-Based Indoor Navigation Using PDR and Magnetic Matching. In Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015) (pp. 2060-2066)

17.Xu, L., Ziedan, N. I., Guo, W., & Niu, X. (2015, September). NAVSDR: a GPU-based modular GPS software receiver. In Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015) (pp. 3198-3205).

     - 2014                                                                                                                                                                                       

1.Jiang, W., Wang, L., Niu, X., Zhang, Q., Zhang, H., Tang, M., & Hu, X. (2014). High-precision image aided inertial navigation with known features: observability analysis and performance evaluation. Sensors, 14(10), 19371-19401.  https://doi.org/10.3390/s141019371

2.Guo, W., Yan, K., Zhang, H., Niu, X., & Shi, C. (2014). Double stage NCO-based carrier tracking loop in GNSS receivers for city environmental applications. IEEE Communications Letters, 18(10), 1747-1750. https://doi.org/10.1109/LCOMM.2014.2350489

3.Niu, X., Chen, Q., Zhang, Q., Zhang, H., Niu, J., Chen, K., ... & Liu, J. (2014). Using Allan variance to analyze the error characteristics of GNSS positioning. GPS solutions, 18(2), 231-242. https://doi.org/10.1007/s10291-013-0324-x

4. Ban, Y., Niu, X., Zhang, T., Zhang, Q., Guo, W., & Zhang, H. (2014, May). Low-end MEMS IMU can contribute in GPS/INS deep integration. In 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014 (pp. 746-752). IEEE. https://doi.org/10.1109/PLANS.2014.6851440

5.Zhang, T., Zhang, H., Ban, Y., Niu, X., & Liu, J. (2014). Tracking Loop Model and Hardware Prototype Verification of GNSS/INS Deep Integration. In China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume I (pp. 553-572). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54737-9_48

     - 2013                                                                                                                                                                                       

1.Zhang, T., Zhang, H., Ban, Y., Yan, K., Niu, X., & Liu, J. (2013). Hardware implementation of a real-time MEMS IMU/GNSS deeply-coupled system. IEICE transactions on communications, 96(11), 2933-2942. https://doi.org/10.1587/transcom.E96.B.2933

2.Wang, L., Niu, X. J., Zhang, Q., Chen, Q. J., & Jiang, W. P. (2013). A Camera/IMU Tightly-Coupled Navigation Algorithm and Verification by Hybrid Simulation. Journal of Harbin Institute of Technology, (6), 12.

3.Zhang, Q., Niu, X., Chen, Q., Zhang, H., & Shi, C. (2013). Using Allan variance to evaluate the relative accuracy on different time scales of GNSS/INS systems. Measurement Science and Technology, 24(8), 085006. https://doi.org/10.1088/0957-0233/24/8/085006

4.Zhang, Q., Niu, X., Zhang, H., & Shi, C. (2013). Algorithm improvement of the low-end GNSS/INS systems for land vehicles navigation. Mathematical Problems in Engineering, 32 (4): 1437-1450. https://doi.org/10.1155/2013/435286

5.Ban, Y., Zhang, Q., Niu, X., Guo, W., Zhang, H., & Liu, J. (2013). How the integral operations in INS algorithms overshadow the contributions of IMU signal denoising using low-pass filters. The Journal of Navigation, 66(6), 837. https://doi.org/10.1017/S0373463313000465

6.Niu, X., Li, Y., Zhang, H., Wang, Q., & Ban, Y. (2013). Fast thermal calibration of low-grade inertial sensors and inertial measurement units. Sensors, 13(9), 12192-12217. https://doi.org/10.3390/s130912192

7.Zhang, T., Zhang, H., Ban, Y., & Niu, X. (2013). Performance evaluation of a real-time integrated MEMS IMU/GNSS deeply coupled system. In China Satellite Navigation Conference (CSNC) 2013 Proceedings (pp. 737-749). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37407-4_68

8.Xu, L., Zhang, H., Guo, W., & Zhang, D. (2013). A new SIMD correlator algorithm for GNSS software receivers to process complex IF data. In China Satellite Navigation Conference (CSNC) 2013 Proceedings (pp. 565-573). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37398-5_52

9.Li, Y., Niu, X., Wang, Q., & Shi, C. (2013, September). Robustness Evaluation and Improvements of an In-situ Hand Calibration Method for Low-end IMUs in Pedestrian Navigation Applications. In Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013) (pp. 2213-2220).

10.张提升, 郭文飞, & 郑建生. (2013). GNSS接收机中一种新的射频干扰抑制级联方法. 宇航学报, 34(7), 932-937. https://doi.org/10.3873/j.issn.1000-1328.2013.07.007

11.张娣, 章红平, 徐良春, & 郭文飞. (2013). GPS 软件接收机中 FFT 捕获关键技术研究. 第四届中国卫星导航学术年会论文集-S7 北斗/GNSS 用户终端技术.

     - 2012                                                                                                                                                                                       

1.Zhang, T., Zhang, H., Yan, K., Liu, J., & Niu, X. (2012, September). Design and verification of built-in IF data record and playback function in GNSS receivers. In Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012) (pp. 2390-2397).

2.Zhang, T., Niu, X., Zhang, H., Zhang, D., & Ban, Y. (2012, September). An integrated research platform for real-time deeply integration. In Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012) (pp. 1666-1673).

3.Zhang, Q., Niu, X., Liu, C., Zhang, H., Shi, C., & Zhao, J. (2012, April). Approaches to evaluate and improve short-term relative accuracy of GPS/INS systems. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium (pp. 396-407). IEEE. https://doi.org/10.1109/PLANS.2012.6236908

4.张提升, 郑建生, 章红平, & 严昆仑. (2012). GNSS 接收机晶振参数对载波相位测量的影响分析. 武汉大学学报信息科学版, 37(12), 1413-1416. https://doi.org/10.13203/j.whugis2012.12.021

     - 2011                                                                                                                                                                                       

版权所有:武汉大学多源智能导航实验室(微信公众号:i2Nav) 当前访问量: 技术支持:武汉楚玖科技有限公司