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Abstract—In filtering-based global navigation satellite 

system (GNSS) / inertial navigation system (INS) integrated 
navigation systems, the precise INS mechanization has fully 
considered the impact of the Earth rotation, Coriolis 
acceleration, etc. However, most inertial measurement unit 
(IMU) preintegration models in factor graph optimization 
(FGO)-based integrated navigation systems are rough and 
ignore these factors. We propose an FGO-based GNSS/INS 
integrated navigation system to analyze and evaluate the 
impact of the Earth rotation on MEMS-IMU preintegration. 
The proposed FGO-based integration is based on a refined 
IMU preintegration, in which the Earth rotation is 
compensated. The proposed GNSS/INS integration is a 
sliding-window optimizer in which the GNSS positioning 
and the IMU preintegration are tightly fused within the FGO framework. The simulated GNSS outage in field tests, an 
effective method, is adopted to evaluate the IMU preintegration quantitatively. The results demonstrate that the refined 
IMU preintegration can achieve the same accuracy as the precise INS mechanization. In contrast, the rough IMU 
preintegration and INS mechanization without compensating for the Earth rotation yields notable accuracy 
degradation. When the GNSS-outage time is 60 seconds, the degradation can be 200% for the industrial-grade MEMS 
module and more than 10% for the consumer-grade MEMS chip. Besides, the degradation can be more significant if the 
GNSS-outage time is longer. The proposed FGO-based GNSS/INS integration (https://github.com/i2Nav-WHU/OB_GINS) 
and the employed datasets (https://github.com/i2Nav-WHU/awesome-gins-datasets) are open-sourced on GitHub. 
 

Index Terms—MEMS-IMU preintegration, factor graph optimization, GNSS/INS integration. 
 

 

I. INTRODUCTION 

nertial measurement unit (IMU) has been employed in 
navigation systems since the last century [1], [2]. With the 

rapid development of micro-electro-mechanical systems 
(MEMS), MEMS IMU has been widely used in navigation 
applications because of their low cost, low power consumption, 
and small size. Some industrial-grade MEMS modules have 
even achieved close precision compared to the tactical-grade 
IMU [3]. However, MEMS IMU suffers from significant errors, 
such as biases and scale factors, resulting in worse accuracy for 
long-term navigation. Hence, MEMS IMU is usually aided by a 
global navigation satellite system (GNSS) receiver to construct 
a GNSS/INS integrated navigation system, which can provide 
accurate long-term navigation. Traditionally, the GNSS/INS 
integration has been based on a Kalman filter framework, 
incorporating the extended Kalman filter (EKF), the unscented 
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Kalman filter [3], and some novel algorithms, such as 
self-learning square-root cubature Kalman filter [4] and gybird 
interacting multiple model [5]. In particular, EKF-based 
GNSS/INS integration has become a mature technology that 
constitutes a benchmark for INS accuracy because the Earth 
rotation, the Coriolis acceleration, and various precise 
corrections are fully considered in the precise INS 
mechanization [1]–[3]. In our previous work [6], to reduce the 
computation load, a simplified INS algorithm, in which only 
the Earth rotation was compensated, achieved an accuracy 
degradation of 0.3% for MEMS IMU, compared to the precise 
INS mechanization using the simulated GNSS outage [7]. The 
work in [6] indicates that the Earth rotation compensation is 
essential in maintaining the MEMS-INS accuracy. In contrast, 
the minor terms in the INS algorithm, including the Coriolis 
acceleration, the rotation correction, the sculling correction, 
and the coning correction, can be ignored. Here, the simulated 
GNSS outage [7] is a standard to evaluate the INS accuracy in 
the integrated navigation system. The simulated GNSS outage 
is usually conducted in open-sky areas, where the GNSS 
positioning tends to be accurate without outliers. 

Factor graph optimization (FGO) in robotics [8], [9] or 
Dynamic Network (DN) in geodesy [10], [11] has been proven 
to be more accurate and effective than the filtering-based 
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approaches for solving maximum a posteriori (MAP) 
estimation, especially in complex and challenging 
environments. FGO and DN can achieve optimal state 
estimation by solving non-linear optimization problems [8], 
[12]. DN is a particular case of FGO because it processes all the 
measurements simultaneously without marginalization [12]. In 
the following parts, the non-linear optimization problems in 
multi-sensor navigation will be expressed as FGO for clarity. 
Compared to the filtering-based methods, such improvements 
benefit from the multiple iterations and the time correction of 
the FGO, as mentioned in [13], [14]. The repeated linearization 
by iterations can significantly reduce the linearization error for 
the non-linear observation model. In addition, all the 
observations in the FGO window can be utilized 
simultaneously, which can help resist the outliers. However, it 
has historically been challenging to incorporate IMU into the 
FGO because of the nature of acceleration measurements and 
biases [15]. In [13], [16], the FGO was used to achieve a 
GNSS/INS integration for positioning in urban areas where the 
GNSS outliers frequently occurred. The results indicated that 
the FGO-based integration outperformed the EKF-based 
method. However, a rough INS factor [13], [16], in which the 
acceleration measurements were employed to constrain 
velocity, and the gyroscope measurements were employed to 
constrain orientation, was used in their systems. The INS 
integration is roughly processed in such INS factor, and the 
IMU biases have not been considered, not to mention the Earth 
rotation compensation. These rough processes are a waste of 
IMU accuracy, even for MEMS IMU. 

To overcome these problems, the IMU preintegration has 
been proposed to utilize the IMU precision fully and further 
improve the system accuracy. The IMU preintegration was first 
proposed by Lupton and Sukkarieh [17]. They integrated the 
IMU measurements in a local reference frame and linearized 
those measurements about the current bias estimations to 
construct a relative-constraint factor in FGO. Subsequently, 
Forster et al. [18] built upon [17] to develop a preintegration 
model that addressed the manifold structure of the SO(3) 
rotation group and seamlessly integrated the preintegration 
model into a visual-inertial pipeline. Similarly, the work in [18] 
was modified by introducing a non-constant gravity model, the 
Earth rotation, and the Coriolis force to fuse IMU and GNSS in 
a Dynamic Network [12]. In related studies [19], [20], IMU 
on-manifold preintegration was extended to SE2(3) Lie group 
[21] to allow expression of the extended pose (position, 
velocity, and orientation). Quaternion-based preintegration 
models have also attracted intense attention [22]–[26]. 
Quaternion is another representation of the orientation, which 
can achieve the same function as the manifold. In addition, to 
overcome the discretization effect, IMU motion integration 
models in continuous time have also been proposed [15], [27]. 
Eckenhoff et al. [15] proposed a new analytical preintegration 
model for the IMU kinematics in continuous time; this 
approach yielded improved accuracy for the visual-inertial 
navigation system (VINS). In addition, a switched linear 
system was used to model the IMU motion in continuous time 
[27], outperforming the state-of-the-art IMU preintegration 
models. The in-vehicle sensors, including the wheel speed and 
steering angle sensor, have also been incorporated into the IMU 
preintegration to improve vehicle navigation accuracy [25], 

[26]. In terms of the INS accuracy, most existing IMU 
preintegration models are relatively rough, and some precise 
compensations or corrections, such as the Earth rotation and 
Coriolis acceleration, have not been well considered. Moreover, 
the essential factor, the Earth rotation, has not been 
compensated in these IMU preintegration, which may 
significantly degrade the INS accuracy even for MEMS IMU, 
as mentioned above. 

The Earth rotation compensation has been considered in 
recent IMU preintegration models [12], [19], [20], [24] to 
improve the preintegration accuracy for high-precision IMU, 
such as tactical-grade and navigation-grade IMU [3]. However, 
its impact on MEMS IMU is still ambiguous. A reduced IMU 
preintegration, without velocities estimation, was proposed for 
GNSS/INS integration in DN [12], considering the Earth 
rotation, the Coriolis force, and a non-constant gravity model. 
However, they did not compare the modified IMU 
preintegration method with the existing methods and illustrated 
the improvement by considering the Earth rotation [12]. Barrau 
et al. [19] proposed a preintegration model incorporating the 
rotating Earth for a high-precision VINS and formulated the 
preintegration while considering the centrifugal force and 
Coriolis effect. Their rigorous treatment of the Coriolis effect 
was achieved using a nontrivial trick, but they did not verify the 
accuracy improvement by compensating for the Earth rotation 
in field tests [19]. In their recent work [20], their IMU 
preintegration was evaluated in a LiDAR-inertial navigation 
system (LINS) with a high-grade IMU (without giving the 
specific type), and the results indicate that the Earth rotation is 
more beneficial for long-term navigation. However, the effect 
of the Earth rotation on MEMS IMU has not been proven in 
their works [19], [20]. In [24], the Earth rotation and gravity 
change were both considered in a preintegration model for 
VINS. However, the gravity change is usually minor within a 
city, and thus it can be ignored. As for the Earth rotation 
compensation, the statistical results indicate that it can be 
omitted for the MEMS IMU but cannot be neglected for the 
navigation-grade IMU [24]. According to some dedicated 
analyses, VINS or LINS involves various parameter settings 
and multiple impact factors, which may notably disturb the 
result and confuse the conclusion. 

Moreover, the interval of the observations in VINS or LINS 
is very short (usually within one second), which means the 
interval of the IMU preintegration is also short. Thus, the 
constraints from these observations are always applied to the 
IMU preintegration. Hence, the impacts of the Earth rotation in 
IMU preintegration cannot be effectively judged, as in [20], 
[24], especially for the MEMS IMU in [24]. To quantitatively 
evaluate the accuracy of the IMU preintegration, long-term 
navigation without other observations should be employed. 
Hence, the IMU preintegration accuracy can be fully exhibited. 
The simulated GNSS outage [7] in open-sky areas is an 
appropriate choice for such evaluation, and it has been widely 
employed for EKF-based GNSS/INS integration to evaluate the 
long-term INS accuracy, such as in [28], [29]. Moreover, the 
simulated GNSS outage has also been used in FGO-Based 
GNSS/INS/ODO/LiDAR-SLAM to analyze the long-term 
accuracy of the IMU/ODO preintegration and the 
LiDAR-SLAM [25]. 

In this study, we aim to analyze and evaluate the impact of 
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the Earth rotation compensation on MEMS IMU preintegration. 
To utilize the method of the simulated GNSS outage, 
FGO-based GNSS/INS integration, rather than VINS or LINS, 
is adopted for analysis and evaluation. The EKF-based 
GNSS/INS integration can constitute a benchmark for the INS 
accuracy using the method of the simulated GNSS outage, as 
mentioned above. Hence, the EKF-based GNSS/INS 
integration is treated as the evaluation baseline. The main 
contributions of this paper are as follows: 

● A sliding-window optimizer for GNSS/INS integration is 
proposed to fuse GNSS positioning and IMU preintegration 
under the framework of FGO. The proposed GNSS/INS 
integration is based on a refined IMU preintegration, in which 
the Earth rotation has been well compensated. 

● The method of the simulated GNSS outage is adopted to 
quantitatively evaluate the impact of the Earth rotation 
compensation on IMU preintegration in the proposed 
GNSS/INS integrations with three field tests in open-sky areas.  

● To fully demonstrate the impact of the Earth rotation 
compensation for different-grade MEMS IMUs, four different 
MEMS IMUs, including one consumer-grade MEMS chip and 
three different industrial-grade MEMS modules, are 
incorporated into the field tests. 

● We open-source our FGO-based GNSS/INS integrated 
navigation system with the refined IMU preintegration, 
together with our GNSS/INS datasets, which contain four 
different MEMS IMUs. 

The rest of the paper is organized as follows. The next 
section introduces a refined IMU preintegration model that 
compensates for the Earth rotation. Section III presents an 
FGO-based GNSS/INS integrated system based on the refined 
IMU preintegration. The experiments and results are presented 
to quantitatively evaluate the impact of the Earth rotation 
compensation on IMU preintegration in section IV. Finally, the 
conclusion of this study is presented. 

II. REFINED IMU PREINTEGRATION MODEL 

Most existing IMU preintegration models ignore the Earth 
rotation compensation, e.g. in [15], [17], [18], [22], [23], 
[25]–[27], which is a waste of IMU precision, especially for 
industrial-grade or high-grade MEMS IMU. Inspired by the 
precise INS mechanization algorithm [1]–[3], we further refine 
the IMU preintegration model to compensate for the Earth 
rotation [24]. This section illustrates the IMU kinematic model 
first, followed by the IMU motion integration and 
preintegration processes. Then, the noise propagation of the 
preintegration measurement is determined, along with the IMU 
bias-updates procedure. 

A. Kinematic Model 

 An IMU can measure angular rates   and accelerations 

(specific force)  , where  denotes the IMU body frame 

(b-frame), and  denotes the inertial frame (i-frame). IMU 
measurements are affected by various errors, including bias, 
scale factor, non-orthogonality, and white noise [3]. In this 
study, we only consider additive noise  and slowly varying 
bias : 

        (1) 

where  and  represent the gyroscope and accelerometer 

biases, respectively;  and  represent the gyroscope and 

accelerometer white noise, respectively. 
Based on the classic high-accuracy INS kinematic model 

[1]–[3], we omit specific tiny terms and obtain the following 
reduced model: 

 


      

 
       






 (2) 

where  denotes the world frame (w-frame), which is defined 

at the initial position of the north-east-down (NED) frame;  

is the gravity vector in the w-frame;  denotes the Earth frame 

(e-frame);  is the Earth rotation rate in the w-frame, and it 

can be defined as 

        (3) 

where  is the magnitude of the Earth rotation rate 

(7.2921158×10-5 rad/s) [3];   is the geodetic latitude at the 

initial point. If we omit , the kinematic model degenerates 

to a rough version, as in [23]. The Coriolis acceleration 
     due to the Earth rotation is reserved to improve 

the integration accuracy. For further reduction of the motion 
model, readers may refer to [3], [6]. 

B. Motion Integration 

During the integration interval   , the duration can be 

computed by     .   and  are two 

consecutive IMU sample times in the interval, as shown in Fig. 
1. The incremental angles   and incremental velocities 

  can be computed by integrating the angular rates  

and accelerations  as 

 
 

      (4) 

It can also be obtained directly from the IMU (some IMUs 
provide incremental measurements). In this section, the IMU 
measurements are compensated with the estimated biases, 
although they are not explicitly expressed in the formulation. 
Besides, the biases are assumed unchanged throughout the 
entire preintegration interval. 

 
Fig. 1. IMU sample time and preintegration intervals. The preintegration 

interval is from   to . The interval      is an 

IMU sample time interval. 
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The IMU motion integration can be formulated considering 
the kinematic model in (2) as follows: 

 

 
 

 

   

 
 

 

   

 

 

 

 

  







  

 

  

 






 (5) 

where subscripts  and   denote  and  , 

respectively; subscript    denotes the historical w-frame 

fixed to the i-frame; subscript    denotes the historical 

b-frame fixed to the i-frame; 
 

 


  denotes the 

rotation of the b-frame with respect to the w-frame at  . The 

IMU motion integration (5) can be further written as 

 

 
 

 

   

 
 

 

 

 
 

 

 



  



 





  

      
   

   

 (6) 

where the rotation vector of the b-frame    corresponds to 

the incremental angles  . The two-sample algorithm can 

also be incorporated to improve the precision of the motion 

integration further, see [1]–[3]. The quaternion 
 

 


 or 

the rotation matrix 
 

 


 is caused by the Earth rotation, 

and their rotation vector can be expressed as 

 
 

 
    (7) 

C. IMU Preintegration 

For a new IMU measurement, we use (6) to update the 
motion states (attitude, velocity, and position). However, the 
IMU motion integration is dependent on the initial motion 
states, and thus cannot be effectively employed in an FGO 
framework. The preintegration theory is used to reformulate the 
model whenever the linearized point (or bias estimation) is 
changed to avoid repeating the integration multiple times.  

To remove the dependence of the initial motion states, the 
b-frame fixed to the e-frame at the instant  , i.e.   , is 

defined as the reference frame for the refined preintegration 
model. We can rearrange the motion integration (6) from   

to  as 

 
 

 

 

 

 

  



  

 

 

  

     

    

  

 (8) 

where 
 

 


 is the Earth-rotation correction term, which 

can be obtained from (7);   and   are the 

Coriolis correction term for the velocity and position 
preintegration, respectively. They can be computed as 
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 (9) 

Hence, we can derive the refined preintegration relative to   

from (8) as 

   

 
 

  
 
   

   
 

 
 

 

 











 



 









 



 

  

 

        

    







 
 
   

  

 





 







   



 

 

   

           


∬

 

 (10) 
where  ,  , and   are the attitude 

preintegration, the velocity preintegration, and the position 
preintegration, respectively. As can be seen in (10), the attitude 

term 


 is used in the refined preintegration because the 

refined preintegration needs the absolute attitude to incorporate 
the Earth rotation. The transformation between the reference 

frame    and the attitude preintegration   can be 

expressed as follows: 

      
 

 


     (11) 

where the w-frame is fixed to the e-frame, and thus we have 

  
 .  

We obtain the refined preintegration measurements with the 
Earth rotation compensated from (10). However, the biases are 
assumed to be unchanged throughout the entire preintegration 
interval from   to . Therefore, once the bias estimation is 

changed, we must update the preintegration measurements 
(section II.E). 

D. Noise Propagation 

In this part, we derive the statistic of the preintegration error 
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state vector. The noise covariance strongly influences the MAP 
estimator because the inverse noise covariance (information 
matrix) is used to weight the factor in the FGO [18], [23]. We 
define the error state vector as follows: 

                
    

  (12) 

where   ,   , and    are the position, velocity, 

and attitude (in terms of the rotation vector) errors of the 
preintegration measurements, respectively;   and   are 

the gyroscope and accelerometer bias errors, respectively. 
With the IMU measurement model expressed in (1), the 

random noises  and  are modeled as Gaussian white 

noise processes. The time-varying IMU bias errors are modeled 
as first-order Gaussian Markov processes [3], according to our 
experience in classic EKF-based GNSS/INS integration [6]. It 
should be noted that the biases are assumed unchanged 
throughout the entire preintegration interval, as mentioned 
above. Hence, the IMU noise model can be expressed as 
follows: 

 

   
 

 

 

  


  


  

  





 





 (13) 

where   and  are the correlation time and white noise of 

the first-order Gaussian Markov process, respectively. 
Using the error-perturbation method in [3], we can derive the 

continuous-time dynamics of the preintegration error state as 
     (14) 

where  is the noise vector, and it is defined as 

            
 (15) 

By omitting the small second-order terms, the dynamics matrix 
 is analytically expressed as follows: 

 





 
 
  
      
   

 (16) 

where the sub-matrix in  is defined as 

 

 
 

     

   
   

 



 



 

                   

 (17) 

Here, the second-order terms of   are also omitted, because 

  is usually a small term. In addition,    corresponds to 

the attitude preintegration quaternion in (10), and  denotes 
the estimated term, because we compensate the raw IMU 

measurements with the estimated IMU biases as 

    
   

 
     (18) 

Here,   indicates that the biases used in the preintegration 

computation are constants, which is why we must incorporate 
bias updates (section II.E). The noise-input mapping matrix  

is expressed as follows: 

 

 
 
  
   
 
  
  

 (19) 

where the sub-matrix  is expressed as 

    
   

 
  (20) 

Because high-rate IMU data are used, the following numerical 
approximation can be applied to calculate the transition matrix 
in the discrete-time form: 

              (21) 

In addition, with the continuous-time noise covariance 
matrix , we can implement a trapezoidal integration to 

compute the discrete-time noise covariance matrix  as 

follows: 

       (22) 

        (23) 

where  is the covariance matrix of the noise vector  in 

(15). Then, the covariance matrix   can be propagated 

from the initial covariance     as follows: 

         (24) 

The first-order Jacobian matrix can also be propagated 
recursively with the initial Jacobian     as 

      (25) 

Using recursive formulation in (24) and (25), we can obtain 
the covariance   and the Jacobian  , which span the 

entire preintegration interval. 

E. Bias Updates 

In sections II.B and II.C, the biases are assumed unchanged 
throughout the entire preintegration interval. If the bias 
estimation is changed, we must incorporate bias updates to 
update the preintegration measurements accordingly. The 
altered biases can be computed as follows: 
  

   
     (26) 

where 


 and 


 denote the constant biases in (18), while 


 and 


 denote the newly estimated biases. Hence, we 

can update the preintegration measurements computed by (10) 
using first-order expansions 
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  (27) 

where the left-hand sides of (27) are the preintegration 
measurements updated using the newly estimated biases; the 
first term of each formulation on the right side of (27) is the 
preintegration measurements computed using the constant 

biases;   is the sub-matrix of  , the location of which 

corresponds to  
  (the same definition applies to 

 ,  ,  , and 
 ). 

Finally, we obtain an accurate IMU preintegration model 
derived from the classic INS kinematic model while 
considering the Earth rotation compensation. In addition, the 
noise propagation of the preintegration measurement is 
described in detail. The bias-updates process is also discussed. 

III. FGO-BASED GNSS/INS INTEGRATION 

In this section, we construct an FGO-based GNSS/INS 
integrated navigation system using the refined IMU 
preintegration model described in the previous section to 
quantitatively evaluate the impact of the Earth rotation 
compensation on IMU preintegration. 

A. Formulation 

An FGO-based sliding-window optimizer is utilized to 
process the IMU preintegration and GNSS positioning 
measurements, as depicted in the abstract. The IMU states in 
the sliding window are defined as   , where 

 is expressed as 

              
 (28) 

Here, the state  includes the position, velocity, and attitude 

of the IMU in the w-frame, along with the gyroscope and 

accelerometer biases, where   . The  is the size of the 

sliding window. We add an IMU preintegration factor into the 
sliding window at each GNSS second, though the GNSS 
positioning factor may be absent due to outages. In other words, 
the interval of each preintegration factor is one second. Besides, 
as depicted in the abstract, the IMU preintegration factors are 
connected one by one, which means it is time-continuous. It is 
conducive for IMU biases estimation because the IMU biases 
are also incorporated into the IMU preintegration factors, see 
section III.B. 

We minimize the sum of the prior and the Mahalanobis norm 
of all measurement residuals to obtain the following MAP 
estimation: 

 

 
 

 
 








              








 (29) 

where  and  are the residuals for the IMU 

preintegration factors and GNSS positioning factors, 
respectively;     is the number of GNSS 

positioning factors;    represents the prior information 

from the marginalization (section III.D). Ceres solver [30] is 
used for solving this nonlinear-optimization problem. 

B. IMU Preintegration Factor 

With the preintegration measurements in (10) and the 
bias-updated preintegration measurements in (27), we can 
compute the residual of the IMU preintegration factor as 

 

 

 

 

   
 

 














 








           
          

 







 
 
  
 
 
 
  
       
  
   

(30) 

where    is the algorithm to extract the (small-angle) 

rotation vector of a quaternion;   and   

are the Coriolis correction term for the velocity and position 
preintegration, respectively, as defined in (9). The gyroscope 
and accelerometer biases are also included in the residual terms 
for online estimation and correction. The wheeled odometer 
can also be integrated into the IMU preintegration [25], which 
is included in our source codes. The covariance   of the 

IMU preintegration factor is derived from section II.D. 

C. GNSS Positioning Factor 

The positioning result in geodetic coordinates  and its 

covariance   can be obtained from the GNSS receiver. 

The geodetic coordinates can be converted to the local w-frame 
as  [3]. Hence, the residual of the GNSS positioning 

factor can be expressed as follows: 

      (31) 

where  is the GNSS antenna lever-arm expressed in the 

b-frame, and the covariance   corresponds to the NED 

direction of the w-frame. 

D. Marginalization 

We incorporate marginalization to bound the computational 
complexity of the sliding-window optimizer. If the number of 
the IMU preintegration factors exceeds the threshold (the 
sliding-window size), we marginalize the oldest IMU state. 
Besides, the IMU preintegration and GNSS positioning 
measurements corresponding to the marginalized state are 
converted into a prior factor. For more details on the 
marginalization in sliding-window optimization, readers may 
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refer to [31]. 
This section incorporates the refined IMU preintegration 

model into an FGO-based GNSS/INS integrated navigation 
system. The residuals of the IMU preintegration factor and 
GNSS positioning factor are all computed as analytical 
expressions. The marginalization approach is also adopted to 
reduce the computational cost. 

IV. EXPERIMENTS AND RESULTS 

The impact of the Earth rotation on MEMS-IMU 
preintegration is evaluated in this section, using the simulated 
GNSS outage [7]. The EKF-based GNSS/INS integration can 
constitute a benchmark of the potential INS accuracy because 
the Earth rotation compensation, Coriolis acceleration, and 
various precise correction are fully considered in the precise 
INS mechanization [1]–[3], as mentioned above. Consequently, 
the classic EKF-based GNSS/INS integrated navigation system 
using the precise INS mechanization was adopted as an 
evaluation baseline. 

A. Vehicle Experiment Setup 

Three vehicle tests were conducted in an open-sky area, with 
durations of 2325, 1617, and 2333 seconds, respectively. The 
trajectories of the tests are depicted in Fig. 2. The average 
vehicle speed throughout the travel period was approximately 
10 m/s, as shown in Fig. 3. Allowing at least 500 seconds for 
navigation-system initialization, we intentionally blocked the 
GNSS positioning for 60 seconds every 150-seconds in the 
post-processing procedure. Each test sequence was processed 
twice with different first-outage start times. We finally obtained 
61 outages in total, and the statistical results for the maximum 
position-drift error during each simulated GNSS outage were 
adopted to evaluate the system accuracy. Note that the attitude 
drift was not considered here because the position drift is a 
sensitive and comprehensive indicator of the inherent accuracy 

of the entire navigation system, while the attitude drift is not [7]. 
Such evaluation method is widely used for GNSS/INS 
integration, such as in [25], [28], [29]. Specifically, the 
root-mean-square errors (RMSEs) of the maximum horizontal- 
and vertical-drift errors in each GNSS outage were used. 

Four different MEMS IMUs were employed in the tests: 
ICM20602, a consumer-grade MEMS chip; ADIS16460, 
ADIS16465, and HGuide-i300, which are all industrial-grade 
MEMS modules with precision differences. The four IMUs 
were attached to the exact vehicle and sampled at the same 
sample rate of 200 Hz. The GNSS positioning results used in 
the tests were Post-Processed Kinematic (PPK) [3] solutions to 
get the best GNSS results with centimeter-level accuracy. The 
ground truth was obtained from a navigation-grade GNSS/INS 
integrated navigation system. 

The main parameters of the four MEMS IMUs are listed in 
Table I. The bias instability parameters for ICM20602 were 
derived from the tested Allan-variance curves; the parameters 
for ADIS16460, ADIS16465, and HGuide-i300, were obtained 
from the corresponding data sheets. Note that the magnitudes of 
the gyroscope-bias instabilities in Table I are all less than the 
Earth rotation rate of 15 °/h, which indicates the necessity of 
considering the Earth rotation in IMU preintegration; otherwise, 
the gyroscope precision will be somewhat wasted. As for the 
acceleration-bias instabilities, they are all less than , 

where  is the normal gravity. As can be seen, the 

bias-instability parameters for these MEMS IMUs are all very 
ideal, mainly because they are obtained from the 
Allan-variance curves using the static data. These parameters 
cannot reflect the IMU precision exactly, according to the 
results in section IV.B. For example, the HGuide-i300 is the 
best IMU, but its bias-instability parameters are even larger 
than that of the ADIS16465. 

Parameter tuning was conducted to mitigate the impacts of 

 
Fig. 2. Trajectories of the vehicle tests. 

 
Fig. 3. Velocity profiles of the vehicle tests. 
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the IMU noise parameters, including  ,  ,  , and  , as 

defined in (13). Note that these parameters are equally applied 
in (13) for M0, M1, M2, and M3. The correlation-times   and 

  were set to 1 hour for all the four MEMS IMUs without 

tuning, according to our previous experience. Batch processes 
based on grid searching were implemented to obtain the 
optimal parameters for these parameters in each mode by 
minimizing the RMSEs of the position-drift errors during the 
simulated GNSS outages. The optimized parameters of the four 
MEMS IMUs can be found on our GitHub page. The turn-on 
biases of these IMUs are not modeled in the proposed 
FGO-based integration or the EKF-based integration. The first 
500 seconds of each test are employed for the system 
initialization to mitigate the effects of the turn-on biases in the 
experiments. More specifically, the simulated GNSS outages 
are conducted after the system has converged. 

Four processing modes were adopted for the tests: 
EKF-based integration with the high-precision INS 
mechanization (baseline), EKF-based integration with the 
rough INS mechanization, FGO-based integration with the 
refined IMU preintegration, and FGO-based integration with 
the rough IMU preintegration, labeled with M0, M1, M2, and 
M3, respectively, as shown in Table II. The FGO-based modes 
for M2 and M3 are described in section III. The M0 was treated 
as the baseline because its accuracy has been well proven to 
constitute a benchmark for the potential INS accuracy [3], as 
noted above. M1 was adopted to evaluate the effect of the Earth 
rotation compensation on INS mechanization, acting as a 
comparison of M3. 

We conducted dedicated experiments to evaluate the 
influence of the sliding-window size . The results indicate 
that the sliding-window size has little impact on the accuracy of 
the FGO-based GNSS/INS integration systems in this 

experiment, as exhibited in Table III. However, it might affect 
the system accuracy in GNSS-challenging environments, such 
as in [13]. Hence, the sliding-window size should be 
appropriate for the possible applications in GNSS-challenging 
environments. Therefore, the sliding-window sizes for M2 and 
M3 were set to 20 seconds to bound the computation 
complexity. The interval of each preintegration factor is one 
second, and the sample rates for the four MEMS IMUs are 200 
Hz, as mentioned above. 

B. Results and Discussions 

After the parameter tuning, we obtained the RMSEs of the 
position-drift errors for the four MEMS IMUs. As shown in 
Table IV, the RMSEs for M0 and M2 are almost identical for 
all the four IMUs; however, the RMSEs for M1 and M3 are 
much worse than those of the other two modes, especially for 
the horizontal drifts. These results demonstrate that the refined 
preintegration model can achieve the same accuracy as the 
classic high-accuracy INS algorithm once the Earth rotation has 
been compensated. In contrast, the IMU preintegration 
accuracy may degrade significantly without the Earth rotation 
compensation. According to the horizontal-drift RMSEs in M0, 
HGuide-i300 and ICM20602 are the best- and 
worst-performing of the four IMUs in this experiment. As 
expected in section II, the higher grade IMU has the gyroscope 
bias error much smaller than the Earth rotation rate; therefore, it 
should care more about the Earth rotation compensation than 
the lower grade IMU. In other words, higher grade IMUs need 
the refined IMU preintegration more. On the contrary, lower 
grade IMU has gyroscope bias error similar to or even larger 
than the Earth rotation rate. Hence, their dominant error comes 
from the sensor instead of the Earth rotation compensation in 
the algorithm. In other words, lower grade IMU should not be 

TABLE IV 
RMSES OF THE HORIZONTAL AND VERTICAL DRIFTS IN 60S GNSS 

OUTAGES (METERS) 

IMU 

M0 
(EKF-Base) 

M1 
(EKF-Rough) 

M2 
(FGO-Refined) 

M3 
(FGO-Rough) 

Hor. Ver. Hor. Ver. Hor. Ver. Hor. Ver. 

ICM20602 45.10 12.89 50.95 13.09 45.30 12.89 51.03 13.09 

ADIS16460 20.03 2.30 29.03 2.47 20.15 2.26 29.19 2.43 

ADIS16465 9.13 0.97 22.29 1.50 9.14 0.96 22.43 1.50 

HGuide-i300 7.68 2.15 23.01 2.99 7.71 2.14 23.09 2.98 

The “Hor.” and “Ver.” denote the horizontal and vertical drifts, respectively. 

TABLE III 
RMSES OF THE HORIZONTAL AND VERTICAL DRIFTS IN 60S GNSS 

OUTAGES CONCERNING THE SLIDING-WINDOW SIZE IN THE M2 (METERS) 

Size (Seconds) 
5 10 20 50 

Hor. Ver. Hor. Ver. Hor. Ver. Hor. Ver. 

ICM20602 45.30 12.89 45.29 12.89 45.30 12.89 45.31 12.89 

ADIS16460 20.15 2.26 20.15 2.26 20.15 2.26 20.15 2.26 

ADIS16465 9.14 0.96 9.14 0.96 9.14 0.96 9.14 0.96 

HGuide-i300 7.70 2.14 7.71 2.14 7.71 1.14 7.71 2.14 

The “Hor.” and “Ver.” denote the horizontal and vertical drifts, respectively. 

TABLE I 
BIAS INSTABILITY PARAMETERS OF MEMS IMUS 

IMU 
ICM20602 

(InvenSense) 
ADIS16460 

(ADI) 
ADIS16465 

(ADI) 
HGuide-i300 
(Honeywell) 

Gyroscope 
(°/h 1σ) 

10.0 8.0 2.0 3.0 

Acceleration 
(mGal 1σ) 

30.0 200.0 3.6 20 

The bias instability parameter for ICM20602 was obtained from the tested 
Allan variance curve; the parameters for ADIS16460, ADIS16465, and 
HGuide-i300, were obtained from the corresponding device data-sheets. Here, 
1 mGal is equal to 1.0x10-5 m/s2. 

TABLE II 
PROCESSING MODE CONFIGURATIONS 

Mode Type Description 

M0 
(EKF-Base) 

EKF 
A classic EKF-based GNSS/INS integrated 

navigation algorithm using the high-precision INS 
mechanization compensating for the Earth rotation. 

M1 
(EKF-Rough) 

EKF 
An EKF-based GNSS/INS integrated navigation 

algorithm using a rough INS mechanization without 
compensating for the Earth rotation. 

M2 
(FGO-Refined) 

FGO 
A mode incorporating the refined preintegration that 

compensates the Earth rotation, as introduced in 
Section II. 

M3 
(FGO-Rough) 

FGO A mode incorporating a rough preintegration 
without compensating the Earth rotation. 
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very sensitive to the IMU preintegration improvement. The 
results in Table IV well confirm these conclusions. Specifically, 
the accuracy degradation in M3 is more significant for the 
better-performing IMU (e.g. HGuide-i300) than the 
worse-performing IMU (e.g. ICM20602). The same conclusion 
can be obtained for the EKF-based integration by comparing 
the results in M0 and M1. It indicates that the Earth rotation 
compensation is also a dominant factor for the INS 
mechanization in the EKF-based integration. Moreover, the 
RMSEs in M1 and M3 are nearly identical for all the MEMS 
IMUs, demonstrating that the Earth rotation compensation 
almost plays the same role in FGO-based integration and 
EKF-based integration. 

The above results can be further proven in Fig. 4, illustrating 
the horizontal-drift error concerning the outage times for the 
four IMUs in different processing modes. The horizontal-drift 
error concerning different outage times in M0 and M2 are 
almost the same for all these four MEMS IMUs. In contrast, the 
horizontal-drift error in M1 and M3 is far more significant, as 
depicted in Fig. 4. Besides, M1 and M3 also exhibit the same 
accuracy concerning different outage times. Moreover, the 
better the IMU is, the more notable accuracy degradation in M0 
and M3 is. The results demonstrate that the Earth rotation 
compensation is a significant factor that impacts the accuracy 
of the IMU preintegration and the INS mechanization. 
Specifically, the accuracy of the IMU preintegration and the 
INS mechanization can be entirely performed by compensating 
for the Earth rotation; otherwise, notable accuracy degradation 
will occur, especially for industrial-grade or high-grade MEMS 
IMUs. Moreover, it can be inferred that the impact of the Earth 
rotation compensation can be more significant when the 
GNSS-outage time is longer. 

We also calculated the horizontal-drift differences between 
M2 and M3 to quantitatively evaluate the impact of the Earth 
rotation compensation on IMU preintegration. As shown in 
Table IV, the better the IMU performance is, the more 
significant the horizontal-drift difference; this result 
corresponds to the previous conclusion. Without compensating 
for the Earth rotation, the IMU accuracy is sometimes wasted. 
Therefore, the horizontal-drift error increases significantly for 
FGO-based integration, as indicated by the rough 
preintegration result (M3). More specifically, the 

horizontal-drift error increases by 10~200% for different-grade 
MEMS IMUs, when the GNSS-outage time is 60 seconds. Such 
differences can be more notable if the GNSS-outage time is 
longer, as can be seen in Fig. 4. Consequently, we can conclude 
that the Earth rotation is a major factor impacting the 
IMU-preintegration accuracy in the graph factor optimization 
and should not be neglected. 

V. CONCLUSION 

In this study, we propose an FGO-based GNSS/INS 
integrated navigation system in which GNSS positioning and 
IMU preintegration are tightly fused in a sliding-window 
optimizer. The Earth rotation compensation has been well 
considered in the employed IMU preintegration model. Using 
the simulated GNSS outage, the impact of the Earth rotation 
compensation on MEMS-IMU preintegration was analyzed and 
evaluated. The results indicate that the Earth rotation 
compensation may notably affect the IMU preintegration and 
the INS mechanization accuracy. The IMU preintegration 
accuracy can be significantly improved to the precise INS 
mechanization level by compensating for the Earth rotation. In 
contrast, the existing rough IMU preintegration without the 
Earth rotation compensation yields notable accuracy 
degradation. In addition, the accuracy degradation can be more 
severe if the GNSS-outage time is longer. Consequently, the 
Earth rotation compensation is the primary factor to be 
considered in IMU preintegration to maintain the IMU 
precision, especially for industrial-grade MEMS IMU or 
high-grade IMU. The conclusion can also be transferred to 
other integrated navigation systems incorporating IMU 
preintegration, such as VINS and LINS. 
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