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Abstract—Accurate and long-distance depth estimation for 

visual landmarks is challenging in visual-inertial navigation 
systems (VINS). In visual-degenerated scenes with illumination 
changes, moving objects, or weak texture, depth estimation may 
be more difficult, resulting in poor robustness and accuracy. For 
low-speed robot navigation, we present a solid-state-LiDAR-
enhanced VINS (LE-VINS) to improve the system robustness and 
accuracy in challenging environments. The point clouds from the 
solid-state LiDAR are projected to the visual keyframe with the 
inertial navigation system (INS) pose for depth association while 
compensating for the motion distortion. A robust depth-
association method with an effective plane-checking algorithm is 
proposed to estimate the landmark depth. With the estimated 
depth, we present a LiDAR depth factor to construct accurate 
depth measurements for visual landmarks in factor graph 
optimization (FGO). The visual feature, LiDAR depth, and IMU 
measurements are tightly fused within the FGO framework to 
achieve maximum-a-posterior estimation. Field tests were 
conducted on a low-speed robot in large-scale challenging 
environments. The results demonstrate that the proposed LE-
VINS yields significantly improved robustness and accuracy 
compared to the original VINS. Besides, LE-VINS exhibits 
superior accuracy than the state-of-the-art LiDAR-visual-inertial 
navigation system. LE-VINS also outperforms the existing 
LiDAR-enhanced method, benefiting from the robust depth-
association algorithm and the effective LiDAR depth factor. 
 

Index Terms—Multi-sensor fusion navigation, LiDAR depth 
enhancement, visual-inertial navigation system, factor graph 
optimization, mobile robot localization. 

I. INTRODUCTION 

isual navigation system has been widely used in 
autonomous mobile robots. For visual navigation based on 

a monocular camera, the rotation can be recovered except for 
the translation scale [1]. An inertial measurement unit (IMU) 
can be incorporated to construct a visual-inertial navigation 
system (VINS) [2], [3] and retrieve the scale. However, low-
cost micro-electro-mechanical system (MEMS) IMU suffers 
from various errors [4], especially the time-varying biases [5], 
making VINS challenging. Typically, the depth of the visual 
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landmark can be triangulated by the tracked features using the 
camera pose. However, the camera pose is usually predicted by 
the MEMS inertial navigation system (INS), which might cause 
an inaccurate estimation of the depth. Besides, the landmark 
depth can be estimated accurately only when the parallax is 
enough. In addition, drastic illumination changes and moving 
objects may affect the depth-estimation accuracy. Multiple 
cameras can be used to estimate the depth without extra motion 
directly [3], [6], [7], but they may still be affected by external 
environmental factors. Besides, if the baselines of the cameras 
are too small, the estimated depth might also be inaccurate and 
distance-limited. In addition, precise calibration is required for 
multiple cameras to obtain an accurate depth. Hence, 
inaccurately estimated depth might frequently occur in visual 
navigation systems, resulting in poor robustness and accuracy, 
especially in challenging environments with illumination 
changes, moving objects, or weak texture. 
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Fig. 1. An illustration of the FOV of the Solid-State LiDAR (Livox Mid-70 
with 70° circular FOV) and the camera (80° horizontal FOV). The color is 
rendered by the reflection intensity of the point clouds. The point clouds are 
accumulated for 20 seconds. The misalignment is caused by the LiDAR-
camera extrinsic parameters. 
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The RGB-D camera and light detection and ranging (LiDAR) 
have been widely used to enhance the visual navigation system, 
which can directly measure accurate depth. RGB-D camera is a 
particular sensor capable of simultaneously providing RGB and 
depth images [8], [9]. However, a standard RGB-D camera can 
only measure depth within several meters, and thus it is 
commonly used for indoor applications. LiDAR can directly 
obtain long-distance and centimeter-level depth measurements. 
It has been incorporated into the visual navigation system to 
provide depth estimation for visual landmarks in recent years 
[1], [10]–[16]. The spinning 3D LiDAR can achieve a 360° 
horizontal field of view (FOV) while a smaller vertical FOV, 
such as 30° for Velodyne VLP-16. In addition, the spinning 
LiDAR provides limited laser beams, such as 16, 32, 64, and 
128, leading to small overlapping areas regarding the FOV of 
the camera and LiDAR. The sparse LiDAR makes it highly 
challenging to associate visual features or textures with LiDAR 
depth. Using LiDAR with more laser beams can mitigate this 
effect. In [1], [10]–[12], 64-beam LiDAR is adopted to provide 
depth for their feature-based visual navigation systems. 
However, the more laser beams the LiDAR has, the more 
expensive it is. In [15], [16], the landmark depth is associated 
with the map built by LiDAR, but the accuracy might be 
affected by the quality of the built map. Another solution to 
incorporate a sparse spinning LiDAR into visual navigation 
systems is using direct methods [13], [14]. 

In recent years, low-cost solid-state LiDAR based on the 
non-repetitive pattern, such as Livox AVIA and Mid-70, has 
been widely used in LiDAR navigation systems [17]–[21], and 
LiDAR-visual navigation systems [22]–[25]. Due to the non-
repetitive pattern, solid-state LiDAR can share large 
overlapping areas with the camera, as shown in Fig. 1. The non-
repetitive scanning pattern of solid-state LiDAR can maximize 
the coverage ratio. Hence, we can obtain a relatively dense map 
by accumulating point clouds for several scans, as depicted in 
Fig. 1. Due to this reason, solid-state LiDAR has been adopted 
to provide depth in recent LiDAR-visual navigation systems 
[22], [24], [25], including feature-based methods [22] and direct 
methods [24], [25]. 

However, the accurate LiDAR depth has not been fully used 
in most of the current LiDAR-enhanced methods. The LiDAR 
depth is only used as an initial value for visual landmarks in 
some methods [11], [22], which wastes the accurate depth to a 
certain extent. The depth is set to a constant and would not be 
optimized in both the feature-based methods [15], [16] and the 
direct methods [13], [14], [24], [25]. However, the LiDAR 
depth also contains noise; thus, it is unreasonable to set it as a 
constant. A cost function is adopted to punish the deviation of 
the landmark depth from the LiDAR depth in [10]. Still, this 
constraint is not directly applied to the landmark depth because 
the landmark is parameterized as a 3D position, which might 
introduce extra errors. Besides, this constraint cannot be 
reserved in their optimization problem [10] once the keyframe 
is removed from the optimization window, resulting in a loss of 
information. Hence, the LiDAR depth must be utilized more 
reasonably and thoroughly. 

For low-speed robots with a speed of several meters per 

second, we propose a solid-state-LiDAR-enhanced visual-
inertial navigation system (LE-VINS) to achieve a real-time, 
robust, and accurate positioning in large-scale challenging 
environments. The solid-state LiDAR with the non-repetitive 
pattern can generate relatively dense point clouds for low-speed 
robots, which is conducive to depth association. We propose a 
robust depth-association method to estimate accurate depths for 
visual landmarks. The associated depth is employed to 
construct a LiDAR depth factor to constrain the inverse-depth 
parameter of the landmark directly [26] in the proposed factor 
graph optimization (FGO) [27]. If the landmark is marginalized, 
the accurate depth constraint can be reserved by converting the 
LiDAR depth factor into the prior factor. The main 
contributions of our work are as follows: 

● A robust solid-state-LiDAR-enhanced visual-inertial 
navigation system is proposed for low-speed robots. The solid-
state-LiDAR with the non-repetitive scanning pattern is 
employed to provide accurate depths for visual landmarks. The 
visual feature, LiDAR depth, and IMU measurements are 
tightly fused within the FGO framework to achieve maximum-
a-posterior estimation. 

● The LiDAR points are projected to the visual keyframe for 
depth association with the accurate INS pose while 
compensating for the motion distortion. A robust depth-
association method with an effective plane-checking algorithm 
is proposed to estimate and verify landmark depths, 
significantly improving the accuracy of the estimated depths 
and avoiding wrong associations. 

● The estimated depth is not only adopted as the initial depth 
of the landmark but also employed to construct a LiDAR depth 
factor in the FGO to constrain the landmark depth directly. If 
the landmark is marginalized, the LiDAR depth factor can be 
converted into the prior factor, and thus the accurate constraints 
can be reserved. 

● Field tests were conducted to evaluate the proposed LE-
VINS in large-scale challenging environments using a low-
speed robot. The results demonstrate that the proposed LE-
VINS yields improved robustness and accuracy compared to 
the original VINS. Besides, the proposed LE-VINS 
outperforms the existing LiDAR-visual-inertial navigation 
system and LiDAR-enhanced method. 

The remainder of this paper is organized as follows. The next 
section discusses a literature review on LiDAR-enhanced visual 
systems. We give an overview of the system pipeline in section 
III. The proposed solid-state-LiDAR-enhanced VINS is 
presented in section IV. The experiments and results are 
discussed in section V for quantitative evaluation. Finally, we 
conclude the proposed LE-VINS. 

II. RELATED WORKS 

In LiDAR-enhanced visual systems, LiDAR is commonly 
adopted to provide accurate depth for visual systems. 
According to the role of the visual subsystems, LiDAR-
enhanced visual systems can be classified into feature-based 
methods [1], [10]–[12], [15], [22], [28], [29] and direct methods 
[13], [14], [24], [25]. Here, some tightly-coupled methods [12], 
[24], [25] are also involved due to the use of LiDAR 
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enhancement. In feature-based methods, the depth from the 
LiDAR is associated with the feature points or feature lines to 
achieve state estimation by bundle adjustment. Direct methods 
use the LiDAR depth for the visual pixel, and the pose 
optimization is conducted by minimizing the photometric error. 
1) Feature-based Methods 

In feature-based methods, the visual features are first 
extracted, including feature points and feature lines. Different 
depth-association methods are employed to estimate the feature 
depth from the LiDAR. The estimated depth will be 
incorporated into the state estimator to improve the accuracy. 

In DEMO [1], LiDAR is utilized to provide depth for their 
feature-based visual odometry. The visual features and point 
clouds are all projected to a sphere with a unit distance to the 
camera center for depth association. Besides, the measurement 
noise of the LiDAR is adopted to weigh the depth residual of 
the features in the bundle adjustment. The same depth-
association method is employed in [15], [16]. However, the 
LiDAR depth is used as a constant in the FGO [15], [16], and 
the depth-association error has not been considered. 

Unlike DEMO, in LIMO [10], the depth estimation is 
conducted in the image plane using the 64-beam spinning 
LiDAR in KITTI datasets [30]. This method is unsuitable for 
LiDAR with fewer laser beams, such as 16-beam LiDAR. In 
addition, the landmark depth from the LiDAR is added to the 
optimizer by punishing the deviation of the landmark depth 
from the measured depth, which can help to estimate the 
odometry scale. However, such constraints in LIMO can only 
be applied within the optimization window and cannot be 
reserved once the landmarks are removed, which results in a 
loss of information. The depth-association method in LIMO is 
adopted in [12] to construct a mono landmark factor with the 
LiDAR depth in Euclidean space. Similarly, in [11], feature 
lines are used together with feature points in the LiDAR-
monocular visual odometry, in which depth estimation is 
conducted in the image plane using a 64-beam LiDAR. 
However, the accurate depth from the LiDAR is only treated as 
a depth prior in [11], which results in a loss of accuracy. 

A novel voxel-map-based depth-association method was 
proposed in a vanishing point-aided LiDAR-visual-inertial 
system [28]. Besides, the work in [28] is further integrated into 
Super Odometry [29]. However, the accurate depth from the 
LiDAR is only used as a prior depth. Hence, the accurate depth 
information is wasted in the state estimation [28], [29]. 

CamVox [22] uses a non-repetitive solid-state LiDAR, Livox 
Horizon, to build a dense, accurate, and long-range depth image. 
The depth image with the RGB image is incorporated into 
ORB_SLAM2 [6] to achieve an RGB-D simultaneous 
localization and mapping (SLAM). However, Livox Horizon 
has a vertical FOV of 25°, which is far smaller than the typical 
FOV of a camera (70° or even larger). Hence, the visual 
information has been partially wasted. 

In these feature-based LiDAR-enhanced visual navigation 
systems, the depth association and the use of the associated 
depth are the two critical parts. Some depth-association 
methods are platform-specific, e.g. 64-beam spinning LiDAR 
for [10]–[12], [28], [29], and non-repetitive solid-state LiDAR 

for [22]. The non-repetitive solid-state LiDAR has not been 
thoroughly studied in current methods. As for the use of the 
associated depth, it has been used insufficiently in these 
methods. The LiDAR depth is only employed as a depth prior 
in [11], [28], [29], or a constant in [15]. Though the 
measurement noise of the LiDAR has been partially considered 
in [1], [10], [22], these methods can still be improved to utilize 
the accurate LiDAR depth fully. 
2) Direct Methods 

The 64-beam spinning LiDAR is adopted in most feature-
based LiDAR-enhanced visual navigation systems because 
such LiDAR can provide relatively dense point clouds. 
However, it is challenging to associate features using a sparse 
LiDAR, such as 16-beam spinning LiDAR, which is much 
cheaper than 64-beam spinning LiDAR. Consequently, 
LiDAR-enhanced direct visual navigation has been proposed to 
employ the sparse LiDAR [13], [14], [24], [25]. 

In [13], direct laser-visual odometry was proposed by 
building upon the photometric-image alignment with occlusion 
handling and plane detection, which can utilize a 16-beam 
LiDAR. However, it [13] relies much on the LiDAR, and the 
non-overlapping area of the image cannot be used, which may 
result in robustness and accuracy degradation in challenging 
environments due to the limited FOV of LiDAR. Similarly, 
DVL-SLAM [14] is a direct visual SLAM using the sparse 
depth of LiDAR with a narrow FOV. The window-based 
optimization is conducted by minimizing the photometric errors 
of the selected points in the image to estimate the pose [14]. 
However, the occlusion has not been considered in [14], which 
may destroy the constant image brightness assumption for the 
direct method and thus degrade the accuracy. 

The direct method is also employed in some tightly coupled 
LiDAR-visual-inertial navigation systems. In R3LIVE [24], the 
direct method is employed in the VIO subsystem, and the LIO 
subsystem is based on the FAST_LIO2 [19]. Similarly, FAST-
LIVO [25] is sparse-direct LiDAR-inertial-visual odometry, in 
which the VIO is based on SVO [31], and the LIO is adapted 
from FAST_LIO2 [19]. The LiDAR depth from the built global 
map is also used in R3LIVE and FAST-LIVO. 

In these direct methods [13], [14], [24], [25], the depths from 
the LiDAR are used as constants. This may degrade the system 
accuracy because the measurement noise and the camera-
LiDAR extrinsic error may introduce inaccurate depth 
measurement. Moreover, direct methods are susceptible to 
illumination changes and involve precise photometric 
calibration [32]. Hence, direct methods may degrade accuracy 
in complex environments with drastic illumination changes. 
 

In this study, we aim at LiDAR-enhanced visual navigation 
to fully utilize the accurate and long-distance LiDAR depth and 
thus improve the robustness and accuracy in large-scale 
challenging environments. As there are typically rich visual 
textures in outdoor environments, the feature-based method is 
adopted in this study. Algorithm improvement is conducted in 
both the depth association and the use of the estimated depth. 
Specifically, a robust depth-association method with an 
effective plane-checking algorithm is proposed, which 
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significantly improves the accuracy of the estimated depth and 
avoids outliers. The estimated depth is not only adopted as the 
initial depth of the landmark but also employed to construct a 
LiDAR depth factor in the FGO, which can provide a direct and 
effective constraint for visual landmarks. 

III. SYSTEM OVERVIEW 

The proposed LE-VINS is built upon our previous work IC-
GVINS [33] by incorporating the solid-state LiDAR to provide 
accurate and long-distance depth for visual landmarks. The 
system framework of LE-VINS is depicted in Fig. 2. Here, the 
solid-state LiDAR with the non-repetitive pattern is employed 
because dense point clouds can be obtained by accumulating 
several LiDAR scans for low-speed robots, which is conducive 
for depth association. In addition, solid-state LiDAR, such as 
Livox Mid-70 and AVIA, can share large overlapping areas 
with the camera, which can associate more visual landmarks 
with accurate LiDAR depths. 

Once the INS is initialized by the GNSS positioning, the INS 
mechanization is employed to provide an accurate prior pose 
for the visual subsystem and LiDAR subsystem. The visual 
subsystem is directly initialized with the INS pose, and the 
detected feature points (Shi-Tomasi) are tracked from frame to 
frame using the Lukas-Kanade optical flow algorithm. For the 
LiDAR subsystem, the point clouds from the solid-state LiDAR 
are projected to the visual keyframe using the INS pose and the 
LiDAR-camera extrinsic parameters. 

Then, the tracked feature pairs in the keyframe are associated 
with the depth from the projected point clouds. If the feature 
pairs are associated, new visual landmarks will be added to the 
visual landmark map. Unassociated feature pairs will be 
triangulated to obtain the initial depth and will be further 
optimized by the FGO. For those landmarks with the LiDAR 
depth, LiDAR depth factors are constructed in the FGO to 
construct LiDAR depth measurements for visual landmarks.  

Finally, the visual reprojection factors, the LiDAR depth 
factors, the IMU preintegration factors, and the prior factor 
from the marginalization are tightly fused within the FGO 
framework to achieve maximum-a-posterior (MAP) estimation. 

The estimated states will be used to update the INS 
mechanization and the newest INS states. 

IV. SOLID-STATE-LIDAR-ENHANCED VISUAL-INERTIAL 

NAVIGATION SYSTEM 

This section presents the proposed solid-state-LiDAR-
enhanced visual-inertial navigation system, as depicted in Fig. 
2. The point clouds from the solid-state LiDAR are first 
projected and accumulated for depth association. A robust 
depth-association method is proposed to estimate the landmark 
depth, with an effective plane-checking algorithm for outlier 
culling. We propose a LiDAR depth factor with the estimated 
depth in the FGO to constrain the landmark depth. Finally, the 
visual feature, LiDAR depth, and IMU measurements are 
tightly fused using the FGO to achieve MAP estimation. The 
main notations involved in this section are shown in Table I. 

A. Point clouds Projection 

Dense point clouds can be obtained from the solid-state 
LiDAR due to its non-repetitive pattern, especially for low-
speed robots, as depicted in Fig. 1. However, each LiDAR point 
is sampled at a different time for such solid-state LiDAR, which 
may cause motion distortion, degrading the accuracy of the 
depth association. In addition, the point clouds need to be 
accumulated to associate the visual landmark with the LiDAR 
depth. Hence, the sequentially sampled point clouds should be 
projected to the camera frame corresponding to the visual 
keyframe. 

The LiDAR-camera extrinsic parameters should be obtained 
first to project the point clouds to the camera frame. By using 
the non-repetitive pattern of the solid-state LiDAR, the LiDAR-
camera extrinsic parameters can be estimated precisely. 
Specifically, the LiDAR point clouds and images are sampled 
simultaneously during the stationary state for several seconds. 
Then the 3D points in the accumulated point clouds and the 
corresponding 2D pixels in the image can be obtained 

 
Fig. 2. System overview of LE-VINS. The parts within the orange area are the 
works in this study. The filled blocks denote the proposed methods in section 
IV. 

TABLE I 
NOTATIONS AND SYMBOLS 

Notations Explanation 

Expressions 

  The attitude quaternion, rotation matrix, and rotation vector 

  The quaternion product 

 The transformation between the quaternion and rotation vector 

 A three-dimension position 

 The normal vector of a plane 

  The covariance matrix 

  The depth and inverse-depth parameter of a visual landmark 

Variables 

 The IMU pose w.r.t the world frame 

 The IMU velocity in the world frame 

 The gyroscope and accelerometer biases 

 The LiDAR-camera extrinsic parameters 

 The camera-IMU extrinsic parameters 
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simultaneously. A nonlinear optimization can be conducted by 
minimizing the reprojection error to estimate the extrinsic 
parameters. The estimated extrinsic parameters can be 
represented as , where  and  denote the camera 

frame (c-frame) and LiDAR frame (l-frame), respectively. 
 As depicted in Fig. 3, with the continuous INS pose and the 

extrinsic parameters, the LiDAR point sampled at  can be 

projected into the camera frame at . The INS pose between 

the two IMU samples can be obtained by linear interpolation, 
and the position at  can be written as 

        (1) 

    (2) 

where  is a scale coefficient;  denotes the world frame (w-
frame), which is defined at the initial position of the navigation 
frame (n-frame), i.e. the local geodetic north-east-down (NED) 
frame;  denotes the IMU body frame (b-frame). As for the 
attitude, we can interpolate the rotation vector as 
      (3) 

     (4) 

where   denotes the rotation vector, as can be seen in [34]. 

Hence, we obtain the interpolated INS pose  at  

from (2) and (4). The INS pose can be converted to the camera 
pose by using the camera-IMU extrinsic parameters , 

as follow 

 
 
 

 (5) 

The same processes can be conducted to obtain the camera pose 
 at . Hence, for a LiDAR point  at , 

denoted as , it can be transformed to the c-frame as 

   (6) 

With the camera pose at  and , the LiDAR point at  can 

be transformed to the c-frame at  as 

     (7) 

Finally, the LiDAR point is projected to the c-frame 
corresponding to the visual keyframe without motion distortion.  

The sequentially sampled point clouds can be projected to the 
same c-frame to obtain relatively dense point clouds for depth 
association. However, more points consume more computation 
resources. Hence, the accumulation time should be limited to 
bound computational complexity. For solid-state LiDAR Livox 
Mid-70, it can measure 100,000 points in one second. For a low-
speed robot with a speed of about 1.5 m/s, the projected point 
clouds in the image plane are depicted in Fig. 4. When the 
accumulation time is 0.5 seconds, the point clouds are dense 
enough for depth association. In contrast, the point clouds are 
sparse for the accumulation time of 0.25 seconds, and the point 
clouds are much denser for the accumulation time of 1 second. 
According to our experiments, the accuracy will not 
significantly improve if the accumulation time is longer than 
0.5 seconds. Consequently, the accumulation time is set to 0.5 
seconds to balance the accuracy and computational complexity. 
The projected point clouds will be further processed for depth 
association. 

B. Robust Depth Association 

We can retrieve depth for visual landmarks with the projected 
point clouds. However, the visual feature points are in the 2D 
image plane, while the point clouds are in the 3D space. To 
achieve depth association, we can project the point clouds into 
the image plane, like [10], or project the visual feature points 
into the c-frame, like [1]. Compared to a large number of point 
clouds, the number of visual features is usually within several 
hundred. Hence, we project the visual features into the c-frame 
for depth association, which can significantly reduce 
computational complexity. The projected visual features in the 
c-frame have no depth, and thus the association is conducted on 
a unit sphere, whose center is at the origin of the c-frame, as 
shown in Fig. 5. 

The projected point clouds are normalized to be converted to 
the unit sphere. Besides, they are downsampled simultaneously 
for a constant-angle density on the sphere. In addition, only the 
points in the foreground will be reserved during the 

   
Fig. 4. The projected point clouds in the image plane (the robot is in dynamic condition with a speed of about 1.5 m/s). Each point is expressed as a red cross for 
better visualization. The accumulation time for the three images are 0.25 second (left), 0.5 second (middle), and 1.0 second (right), respectively. 

 
Fig. 3. The sample time of the IMU, LiDAR point, and visual keyframe. 
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downsampling; thus, some occlusion points can be removed. 
The higher angle density denotes more computation, while the 
lower angle density denotes lower accuracy. The horizontal 
FOV of the used camera is about 80°. The FOV of the used 
solid-state LiDAR Mid-70 is about 70° (circular), but the FOV 

of the projected point clouds can be larger due to movement. 
Hence, the FOV of the projected point clouds is set to 90° for 

downsampling to ensure that more visual features can be 
associated. The noise of the feature tracking is usually within 
1.5 pixels, which means the tracked feature can be expressed 
within a square with a width of 3 pixels. Hence, the angle 
density for the downsampling can be determined by considering 
the camera resolution of   as 

 
 

 

    
    

（ ） 0.21

（ ） 0.26
 (8) 

where  and  denote the horizontal and vertical direction, 
respectively. According to the results in (8), the angle density 
  is set to 0.2° to improve the depth-association accuracy. 
Hence, the downsampled point clouds are located on the unit 
sphere with the resolution of  . In the meantime, the 
visual feature points are also projected to the unit sphere using 
the camera projection function. 

A KD tree is constructed using the down-sampled point 
clouds on the unit sphere to find the corresponding points and 
retrieve depth for visual features. Typically, the plane fitting is 
adopted to estimate the depth for visual feature, using three 
selected LiDAR points, such as in [1], [10], [15]. However, we 
cannot ensure that the visual landmark is lying on a real plane 
using only three points; thus, inaccurate or wrong depth 
estimation may occur. Hence, a plane-checking algorithm can 
be employed to verify the estimated depth to avoid and decrease 
wrong associations. As depicted in Fig. 5, we find the nearest 
five points of the visual feature point by searching in the KD-
tree. The found five points are employed to fit a local plane 
around the visual landmark. Suppose the furthest found point 
around the visual feature point on the unit sphere is not within 
  ; the association will not be continued to avoid 
introducing possible outliers. Specifically, the found five points 

can be approximately expressed within a circle with the radium 
of     pixels in the image plane, according to the 
formulation in (8). The expected plane will not pass through the 
origin  in this depth-association problem. Hence, the 

LiDAR point  in a plane can be expressed as 

  (9) 
where  is the normal vector of the plane. Hence, an 
overdetermined linear equation can be constructed to solve this 
plane as 

     
      

 (10) 

where   are the found LiDAR points in the c-frame 

with 3D coordinates, as depicted in Fig. 5. The linear equation 
(10) can be solved by a method like QR decomposition, and 
thus the normal vector  can be obtained. 

A plane-checking algorithm is employed to avoid wrong 
associations and ensure that the visual landmark lies on a real 
plane. More specifically, the plane checking is conducted by 
calculating the point-to-plane distance as 

    (11) 

If   for all the five LiDAR points, the fitted plane 
will be used to estimate the depth of the visual landmark; 
otherwise, the depth association will be failed. Here, the 
distance threshold of 0.1 m is set according to the point-to-plane 
metric in the LiDAR-inertial navigation system (LINS), such as 
in [17], [35]. The occlusion points are not explicitly processed 
in our method, but they can be easily detected by the plane-
checking algorithm and will not be employed for depth 
association. The plane checking can significantly avoid wrong 
depth associations and thus improve the system robustness and 
accuracy. 

With the normal vector , the landmark depth can be 
retrieved. We find the LiDAR point furthest to the visual feature 
on the unit sphere, i.e. the  in Fig. 5. With the visual feature 

point   on the unit sphere, we want to retrieve its 3D 

coordinate  in the c-frame as 

   (12) 

where  is the distance to the c-frame center . Using the 

plane equation (9),  can be solved as follows 
      (13) 

 


 (14) 

Finally, the 3D coordinate of the visual landmark in c-frame, 
denoted as , can be obtained from (12). The 

landmark depth in this visual keyframe can be expressed as 
   (15) 

The estimated depth from the depth association can be 
employed to directly constrain the inverse-depth parameter of 

 
Fig. 5. An illustration of the depth association for visual feature. The orange 
points denote the LiDAR points, while the green points denote the visual 
feature point. 
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the visual landmark [26], which will be presented in section 
IV.C.3. 

A robust depth-association method is presented in this 
section, which can estimate accurate depth for visual landmarks. 
More specifically, the landmark depth is obtained by fitting a 
local plane with an effective plane-checking algorithm rather 
than the rough processes as in [1], [15]. For those depth-
unassociated visual features, triangulation will be conducted to 
retrieve the initial depth, and the depth will be further estimated 
in the FGO. Results will be presented to demonstrate the 
superior robustness and accuracy of the proposed depth-
association method in section V. The estimated landmark depth 
from the LiDAR will be treated as an initial value and employed 
to construct the LiDAR depth factor in the FGO to constrain the 
landmark depth. 

C. Factor Graph Optimization 

The associated depth from LiDAR can be incorporated into 
the FGO to improve the state estimation accuracy. Specifically, 
when a new visual keyframe is selected, a new time node is 
created in the sliding-window optimizer. In the meantime, the 
LiDAR points are projected to the visual keyframe for depth 
association. For those visual features with LiDAR depths, new 
landmarks are created and added to the landmarks map, while 
other landmarks are created by triangulation. Hence, the 
LiDAR depth factors can be constructed in the FGO to 
constrain the inverse-depth parameter of the landmarks directly. 
The IMU preintegration is employed to provide relative 
constraints between each consecutive time node. Finally, the 
visual reprojection factors, the LiDAR depth factors, the IMU 
preintegration factors, and the prior factors are tightly fused 
under the framework of FGO to achieve MAP estimation. 
Factor graph optimization is equivalent to nonlinear 
optimization and is conducted by solving a nonlinear least 
square problem. The FGO framework of LE-VINS is depicted 
in Fig. 6. 
1) Formulation 

The state vector  in the sliding-window optimizer of LE-
VINS can be defined as follow: 

  
      

    
    

 (16) 

where  is the IMU state at each time node, including the 

position, the attitude quaternion, and the velocity in the w-frame, 
and the gyroscope biases  and the accelerometer biases ; 

  is the inverse-depth parameter of the visual landmark in the 
reference keyframe, i.e. the first observed keyframe for 
triangulated landmarks, or the keyframe associated with the 
LiDAR depth;  is the number of the IMU preintegration in 
the sliding window;  is the camera-IMU extrinsic 

parameters. 
The following nonlinear optimization problem can be solved 

by minimizing the sum of the Mahalanobis norm of all 
measurements and the prior as 

 

 
 

   







               



 






 
 (17) 

where  are the residuals for the visual measurements;  is 

the landmark map in the sliding window, and  is the landmark 
in the map;  denotes the reference keyframe of the landmark 

, and  is another observed keyframe;  are the residuals 

for the LiDAR depth measurements, which directly constrain 
the inverse-depth parameters of the visual landmarks;  are 

the residuals for the IMU preintegration measurements; 
 denotes the prior information from the 

marginalization. The Ceres solver [36], an open-sourced library 
for modelling and solving large optimization problems, is 
adopted in LE-VINS. Specifically, the Levenberg-Marquardt 
algorithm [36] is employed to solve the nonlinear least squares 
problem in (17). 
2) Visual Reprojection Factor 

The visual reprojection residual is defined on a unit sphere. 
For the landmark  with its inverse-depth parameter   in its 

reference frame  and another observed keyframe , the visual 

reprojection residuals can be defined as 

 

   

 
 

 










            
 















 

 (18) 

where   and   are the observed visual features in the pixel 

plane;  and  are the coordinates of the landmark  in the 

b-frame corresponding to the keyframes  and ;  is the 

calculated coordinate of the landmark  in the c-frame of the 
keyframe ;  and  are two orthogonal bases that span the 

tangent plane of ;   is the back camera projection 

 
Fig. 6. The FGO framework of the LE-VINS. 
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function that transforms the visual feature in pixel plane   to 

a unit vector using the camera intrinsic parameters;  and 

 are the extrinsic parameters in (16);  and  

represent the pose of the IMU in the w-frame, as in (16). The 
covariance   in (17) are also propagated from the pixel plane 

(the standard deviation of 1.5 pixels) onto the unit sphere. 
3) LiDAR Depth Factor 

With the depth-association algorithm in section IV.B, 
accurate depth estimation for visual landmarks can be obtained. 
However, the estimated depth also contains noise, mainly 
because the depth-association algorithm may introduce error. 
Hence, it is improper to set the landmark depth as a constant 
without being optimized in the FGO, such as in LVI-SAM [15]. 
To fully utilize the accurate depth from the LiDAR, we propose 
a LiDAR depth factor, which can directly constrain the 
landmark depth while considering the depth-association noise. 
Specifically, the LiDAR depth factor utilizes the estimated 
LiDAR depth to impose a constraint on the inverse-depth 
parameter of the landmark, and the residual can be written as 

   
   (19) 

where   is the inverse-depth parameter of the landmark  as 

in (16), and  is the associated depth for the landmark  from 

(15). The standard deviation for the covariance   is set to 0.1 

m according to the distance threshold for the plane-checking 
algorithm (11). In conclusion, the accurate depth from the 
LiDAR is employed to construct the LiDAR depth factor, and 
the depth-measurement noise is also considered. Moreover, the 
LiDAR depth factor can be converted to the prior factor if the 
landmark is marginalized, and thus the constraint can be 
reserved. 
4) IMU Preintegration Factor 

We follow our refined IMU preintegration [37] that 
compensates for the Earth rotation to improve the accuracy of 
industrial-grade MEMS IMU. The residuals of the employed 
IMU preintegration factor can be expressed as 

 

 

   
 









 

 





      
         
  
   



 (20) 

where   and   are the Coriolis correction 

term [37];  ,  , and   are the position, 

velocity and attitude preintegration measurements, respectively; 
 are the gravity in the w-frame; 

 
 


 is caused by the 

Earth rotation. The gyroscope biases  and accelerometer 

biases  in (16) are also included in the residuals for online 

estimation and correction. The calculated position 

preintegration   and velocity preintegration   can 

be expressed as follows: 

 

  


  


  

 

 

 

 



   

  

   








 (21) 

The covariance   of the IMU preintegration factor is 

derived from the noise propagation [37]. 
5) Marginalization 

For real-time positioning, only several visual keyframes can 
be reserved in the optimization window to bound the 
computational complexity. Hence, when a new keyframe is 
added to the window, an old keyframe with its landmarks will 
be removed. However, suppose the landmarks are removed 
from the window directly. In that case, the accurate LiDAR 
depth cannot be transformed or reserved in most existing 
methods, such as DEMO [1] and LIMO [10], which results in a 
loss of information. Hence, marginalization [32], [38] is 
adopted to convert all the measurements corresponding to the 
removed state into a prior. Specifically, the marginalization is 
conducted using the Schur complement operation [38], and the 
prior is constructed based on all marginalized measurements 
corresponding to the removed state. Without constructing the 
LiDAR depth factor, the depth information in LVI-SAM [15] 
cannot be converted into the prior. In contrast, with the 
employed LiDAR depth factor in the proposed LE-VINS, the 
LiDAR depth measurements can also be converted into the 
prior during the marginalization. Hence, the accurate depth 
constraints can be reserved, which can improve the system 
accuracy. 

V. EXPERIMENTS AND RESULTS 

This section presents the experiments and results to evaluate 
the robustness and accuracy of the proposed LE-VINS. The 
equipment setup of the employed robot and the configurations 
of the experiments are described first. Then, the field tests were 
conducted in various environments for quantitative evaluation 
to examine the accuracy and robustness of LE-VINS. Finally, 
the running time of LE-VINS is presented. 

A. Equipment Setup and Configurations 

The proposed LE-VINS is implemented using C++ and the 
robot operating system (ROS). A low-speed wheeled robot, 
with an average speed of around 1.5 m/s, is employed for the 
field tests, as depicted in Fig. 7. The sensors used in this study 
include a camera with a resolution of 1280x1024 and a frame 
rate of 20 Hz (Allied Vision Mako-G131), a solid-state LiDAR 
with the frame rate of 10 Hz (Livox Mid-70), an industrial-
grade MEMS IMU (ADI ADIS16465 with the gyroscope bias 
instability of 2 °/hr and a frame rate of 200 Hz), and a dual-

antenna GNSS receiver with the frame rate of 1 Hz (NovAtel 
OEM-718D). The GNSS real-time kinematic (RTK) is adopted 
to achieve high-accuracy positioning [39]. These sensors are all 
synchronized through hardware triggers to the GNSS time. An 
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onboard ARM computer (NVIDIA Xavier and 32GB RAM) is 
adopted for data acquisition and is utilized to achieve real-time 
navigation. The ground-truth system is a high-accuracy 
GNSS/INS integrated navigation system using the GNSS-RTK 
and a navigation-grade IMU. The ground truth (0.02 m for 
position and 0.01 deg for attitude) is generated by a post-
processing software. Here, the GNSS positioning (5 seconds) is 
only used for initialization, as shown in Fig. 2. 

The intrinsic parameters of the camera and the camera-IMU 
extrinsic parameters  are all calibrated offline using 

the Kalibr [40]. The camera-IMU extrinsic parameters are also 
estimated and compensated online in LE-VINS. The LiDAR-
camera extrinsic parameters  are calibrated using the 

non-repetitive pattern of the solid-state LiDAR, as mentioned 
in section IV.A. The LiDAR-camera extrinsic parameters are 
not estimated online in LE-VINS. 

We compared LE-VINS with its original VINS, IC-VINS, in 
[33] to evaluate the improvement by incorporating LiDAR 
depth. We also compared LE-VINS with the tightly-coupled 
LiDAR-visual-inertial navigation system R2LIVE [23]. Here, 
R2LIVE is adopted because it is feature-based and supports the 
solid-state LiDAR. However, LiDAR is not utilized to provide 
depth for visual landmarks in R2LIVE. As LVI-SAM [15] does 
not support the solid-state LiDAR, we implemented the 
LiDAR-enhanced method in LVI-SAM [15] to replace the 
proposed method, denoted as LE-VINS-LS (“LS” represents 
LVI-SAM). The difference between LE-VINS and LE-VINS-
LS is only the LiDAR-enhanced method, including the depth 
association and the usage of the LiDAR depth. Specifically, LE-
VINS-LS uses only three nearest points to associate depths with 
visual landmarks without using the plane-checking algorithm. 
Besides, the associated depths are set to constants during the 
optimization in LE-VINS-LS without using the proposed lidar-
depth factor. As feature-based visual processes are employed, 
we use a max of 120 features for these systems. 

The absolute and relative pose errors [41] were adopted for 
the quantitative evaluation. Specifically, the relative error over 
the sub-sequences of the length of 25m, 50m, 100m, and 200m 
are employed to evaluate the short-term and long-term accuracy. 

It should be noted that the results for IC-VINS, LE-VINS, and 
LE-VINS-LS are all determinant in each run. All the systems 
are run in real-time on a desktop PC (AMD R7-3700X and 
32GB RAM) under the framework of ROS. 

B. Evaluation of the Accuracy 

To quantitatively evaluate the accuracy of the proposed LE-
VINS, two field tests were conducted in large-scale challenging 
environments, all on the Wuhan University campus. The 
trajectory lengths in experiment-1 and experiment-2 are 2554 
meters (1801 seconds) and 2533 meters (1778 seconds), 
respectively. There are various challenging scenes in the two 
experiments, including severe illumination changes, weak 
textures, and moving objects. The illumination changes are 
caused by the sunshine, mainly in experiment-1. The weak-
texture scenes mostly happened in experiment-2, where there 
are some open-sky scenes. In addition, there are many moving 
objects in both experiments, including pedestrians, bicycles, 
and vehicles. These challenging scenes may significantly affect 
the robustness and accuracy of the visual navigation system. 
1) Comparison of the Trajectory 

 The test trajectories in experiment-1 and experiment-2 are 
depicted in Fig. 8 and Fig. 9. The proposed LE-VINS is well 
aligned with the ground truth. There are no notable differences 
between LE-VINS and IC-VINS in terms of the trajectory in the 
two experiments. The better rotation accuracy denotes a more 
similar trajectory to the ground truth. Hence, it demonstrates 
that LE-VINS and IC-VINS yield almost similar long-term 
accuracy and rotation accuracy. For LE-VINS-LS, it occurs a 
large deviation in scene S1 in experiment-1, as shown in Fig. 8. 
Besides, LE-VINS-LS exhibits a similar trajectory to LE-VINS 
in experiment-2, as depicted in Fig. 9. In contrast, R2LIVE 
deviates from the ground truth notably, showing worse long-
term accuracy, especially in experiment-1. The LiDAR 
subsystem in R2LIVE plays a more critical role than the visual 
subsystem. However, the two experiments have rich visual 
textures with less structured scenes. The unstructured scenes are 
challenging for the LiDAR data association, especially for the 
solid-state LiDAR with a small horizontal FOV. Hence, 
R2LIVE exhibits a worse trajectory in experiment-1, as shown 
in Fig. 8. In addition, the LiDAR systems in R2LIVE are based 
on scan-to-map matching, and thus R2LIVE can match its 
previous trajectories with the help of the visual system in 
experiment-2, as shown in Fig. 9.  

The absolute rotation error (ARE) and the absolute 
translation error (ATE) in the two experiments are exhibited in 
Table II. Compared to IC-VINS, LE-VINS demonstrates 
improved accuracy in the two experiments, and the 
improvement is more than 10% in absolute translation. In 
contrast, LE-VINS-LS degrades the accuracy in experiment-1, 
though it exhibits slightly higher translation accuracy than LE-
VINS in experiment-2. As IC-VINS has already achieved 
superior accuracy, we cannot find notable differences between 
LE-VINS and IC-VINS in trajectory, as mentioned above. 
Besides, R2LIVE exhibits the worst absolute accuracy, 
especially for the rotation accuracy, which corresponds to the 
trajectory results. 

 
Fig. 7. Equipment setup of the robot. 
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2) Comparison of the Relative Error 
The relative rotation error (RRE) and the relative translation 

error (RTE) are exhibited in Table III. Compared to IC-VINS, 
the proposed LE-VINS indicates a significant improvement in 
terms of short-term accuracy, i.e. the sub-sequences of the 
length of 25 m and 50 m. Specifically, the RTEs over 25 m 
decrease by more than 30% for LE-VINS in the two 
experiments. Such improvements for LE-VINS benefit from the 
robust depth-association method, which significantly avoids 
wrong associations. Besides, the proposed LiDAR depth factor 
in the FGO can fully utilize the accurate depth information. As 
for the long-term accuracy, i.e. the sub-sequences of the length 
of 100 m and 200 m, the improvements for LE-VINS are not 
significant, as IC-VINS has already achieved comparable long-
term accuracy. In contrast, LE-VINS-LS exhibits few 
improvements compared to IC-VINS and even degrades 
accuracy in experiment-1. It demonstrates that the existing 
LiDAR-enhanced method is not sufficiently robust and is 
susceptible to environments. 

Table III shows that R2LIVE achieves satisfied short-term 

accuracy and exhibits slightly higher translation accuracy than 
IC-VINS and LE-VINS in experiment-1, benefiting from the 
tightly-coupled design. However, it illustrates worse long-term 
accuracy and rotation accuracy than the proposed LE-VINS. 
The testing environments with fewer structured scenes are not 
conducive for the solid-state LiDAR with a small FOV, while 
the LiDAR subsystem plays a more critical role in R2LIVE. 
Hence, R2LIVE exhibits worse long-term accuracy, 
corresponding to the absolute-error results. 
 

In conclusion, LE-VINS exhibits notably improved accuracy 
compared to the original VINS, IC-VINS. Besides, LE-VINS 
yields better robustness and consistency than the existing 
LiDAR-enhanced method in different challenging 
environments. Furthermore, the proposed LE-VINS exhibits 
superior accuracy than the state-of-the-art LiDAR-visual-
inertial navigation system. It demonstrates that the proposed 
LiDAR-enhanced method can significantly improve system 
accuracy.  

C. Evaluation of the Robustness 

1) Comparison of the Short-term Error 
Table III indicates that the differences between IC-VINS, 

LE-VINS and LE-VINS-LS are mainly in the short-term 
translation error in the two experiments. Besides, the short-term 
accuracy can reflect the local consistency or robustness [42]. 

Fig. 9. The test trajectories in experiment-2. The trajectory length is 2533 
meters. S4 denotes the degenerated scene in section V.C.1. 

Fig. 8. The test trajectories in experiment-1. The trajectory length is 2554 
meters. scenes S1, S2, and S3 denote the degenerated scenes in section V.C.1. 

TABLE II 
THE ABSOLUTE ROTATION AND TRANSLATION ERROR 

ARE / ATE (deg / m) Experiment-1 Experiment-2 

R2LIVE 2.57 / 4.54 1.02 / 1.96 

IC-VINS 0.43 / 1.67 0.59 / 1.20 

LE-VINS-LS 0.80 / 1.99 0.38 / 0.99 

LE-VINS 0.46 / 1.37 0.37 / 1.06 

The bold results denote the best within different methods. 
 

TABLE III 
THE RELATIVE ROTATION AND TRANSLATION ERROR 

RRE / RTE 
(deg / %) 

25 m 50 m 100 m 200 m 

Experiment-1 

R2LIVE 0.45 / 0.71 0.57 / 0.64 0.81 / 0.67 1.27 / 0.81 

IC-VINS 0.16 / 1.05 0.21 / 0.83 0.29 / 0.71 0.41 / 0.60 

LE-VINS-LS 0.17 / 1.00  0.21 / 0.89  0.28 / 0.81  0.46 / 0.72  

LE-VINS 0.15 / 0.73  0.19 / 0.67  0.25 / 0.60  0.37 / 0.52  

Experiment-2 

R2LIVE 0.40 / 0.97 0.53 / 0.76 0.76 / 0.68 1.10 / 0.71 

IC-VINS 0.14 / 0.79 0.19 / 0.57  0.27 / 0.48 0.38 / 0.41 

LE-VINS-LS 0.13 / 0.64 0.15 / 0.50 0.19 / 0.39 0.28 / 0.32 

LE-VINS 0.13 / 0.49 0.16 / 0.41 0.21 / 0.35 0.29 / 0.32 

The bold results denote the best within different methods. 
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Hence, the detailed results of the short-term translation error are 
presented in this part. 

The relative translation error over the sub-sequence length of 
25 m in experiment-1 and experiment-2 are depicted in Fig. 10 
and Fig. 11. For IC-VINS, there are many bad cases where the 
RTEs are larger than 2%. These bad cases denote the visual-
degenerated scenes in the two experiments, as the errors are 
more notable in these cases. The results indicate that IC-VINS 
is not accurate enough in these degenerated scenes, exhibiting 
insufficient robustness.  

Compared to IC-VINS, the proposed LE-VINS demonstrates 
significantly improved accuracy. Almost all the relative 
translation errors are minor than 2%, except for one extremely 
challenging scene in experiment-1, as depicted in Fig. 10. 
Besides, most of the relative translation errors are smaller than 
1%, which illustrates the superior accuracy of LE-VINS, 
benefiting from the robust depth-association method and the 
employed LiDAR depth factor in the FGO. In contrast, there are 
still many bad cases for LE-VINS-LS, where the relative 
translation errors are more significant than 2%. The results 
demonstrate that the existing LiDAR-enhanced algorithm is not 
accurate enough because of the rough depth-association method 
and the inefficient use of the associated LiDAR depth. It can be 
concluded that the proposed LE-VINS can significantly 
improve the system accuracy by fully using the accurate LiDAR 
depth.  

However, there are several degenerated scenes for LE-VINS 
where the relative translation errors are more significant than 
1%. We picked up four degenerated scenes for LE-VINS, 
denoted as S1, S2, S3, and S4, as shown in Fig. 8, Fig. 9, Fig. 
10, and Fig. 11. According to our analysis, scene S1 is located 
in a narrow passage several large walls parallel to the road, and 
the error of the extrinsic parameters may result in wrong or 
inaccurate depth estimation. High dynamic (continuous rotation) 
happens in scene S2, and thus the error of the MEMS IMU is 
significant. In scene S3, severe illumination changes occur, 
resulting in fewer usable areas in the image. Scene S4 is mainly 
caused by moving objects, especially motor bicycles and 

vehicles. As LE-VINS is a visual-based system, it may still be 
affected by these visual-degenerated scenes to a certain extent. 
Nevertheless, the accuracy is notably improved in S2 and S3, 
and without notable degradation in S1 and S4, compared to IC-
VINS and LE-VINS-LS. Hence, the results in these scenes are 
acceptable for LE-VINS.  
2) Evaluation in Various Environments 

To further evaluate the robustness of LE-VINS, we 
conducted different experiments in various environments. 
Specifically, four experiments were conducted on the Wuhan 
University campus, as depicted in Fig. 12. Experiment-3 (1151 
meters) was conducted around the Xinghu building group, 
where there are drastic illumination changes, repetitive textures, 
and lots of moving objects. Experiment-4 (1657 meters) was 
conducted in an abandoned playground with a massive mound. 
Experiment-5 (2321 meters) and experiment-6 (1539 meters) 
were all carried on in complex campus scenes, where there are 
quantities of trees and moving objects, including pedestrians, 
bicycles, and vehicles.  

The trajectory shape might have more impact on the absolute 
error than the relative error. Hence, the relative pose error is 
employed to evaluate the robustness of LE-VINS in various 
environments, as shown in Table IV. The results indicate that 

 
Fig. 11. The relative translation error over 25m in experiment-2. S4 
corresponds to the degenerated scene in Fig. 9. 

 
Fig. 10. The relative translation error over 25 m in experiment-1. S1, S2, and 
S3 correspond the degenerated scenes in Fig. 8. 

 
Fig. 12. The test scenes in various environments. Here, different colors 
represent different experiments. 
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LE-VINS demonstrates very similar accuracy in various 
environments, which is identical to the results in Table III. As 
experiment-3 is less challenging, LE-VINS achieves the best 
accuracy. Nevertheless, LE-VINS achieves similar accuracy in 
various challenging environments with visual-degenerated 
scenes, including illumination changes, repetitive textures, and 
moving objects. The results demonstrate that LE-VINS yield 
superior robustness in various environments.  

D. Running time analysis 

The average running times of LE-VINS in experiment-1 and 
experiment-2 are exhibited in Table V. Non-keyframes are not 
included in the running-time statistic, and the average interval 
of the keyframes is around 200 ms. The depth association and 
FGO are only implemented when a keyframe is selected. Hence, 
LE-VINS can run in real-time on both the desktop PC (AMD 
R7-3700X and 32GB RAM) and onboard ARM computer 
(NVIDIA Xavier and 32GB RAM).  

VI. CONCLUSIONS 

This study proposes a robust solid-state-LiDAR-enhanced 
visual-inertial navigation system for low-speed robots. The 
solid-state LiDAR with the non-repetitive scanning pattern is 
employed to provide accurate and long-distance depth for 
visual landmarks. With the estimated depth by the robust depth-
association method, the visual feature, LiDAR depth, and IMU 
measurements are tightly fused within the FGO framework to 
achieve MAP estimation. Field tests were conducted on a low-
speed robot in various large-scale challenging environments for 
quantitative evaluation. The results demonstrate that the 
proposed LE-VINS yields superior robustness and accuracy 
compared to the state-of-the-art navigation systems. Besides, 
LE-VINS achieves improved robustness compared to the 
existing LiDAR-enhanced method, benefiting from the robust 
depth-association algorithm and the LiDAR depth factor in the 
FGO. 

The system accuracy is improved by incorporating the solid-
state LiDAR to provide accurate depth for visual landmarks. 
However, there are still some challenging scenes for LE-VINS, 
where the relative error (over 25 meters) is larger than 1% and 
even 2%. In addition, the solid-state LiDAR is only employed 
to provide depth for visual landmarks. Hence, future work is to 
implement a tightly-coupled LiDAR-visual-inertial navigation 
system to utilize all the measurements fully and achieve a more 
robust and accurate pose estimation. 
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