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A Novel Minimum Distance Constraint Method
Enhanced Dual-Foot-Mounted Inertial Navigation

System for Pedestrian Positioning
Tao Liu , Jian Kuang , You Li , Member, IEEE, and Xiaoji Niu

Abstract—Foot-mounted inertial navigation system (Foot-INS)
with the zero velocity update (ZUPT) has become one of the indis-
pensable technical means in professional pedestrian positioning
fields due to the advantages of self-constraint and immune to envi-
ronmental factors. The dual-Foot-INS can provide more excellent
autonomous positioning performance than a single-Foot-INS
because it utilizes more opportunities for zero velocity correc-
tion and additional distance constraint information. However, the
classical dual-Foot-INS does not fully exploit the distance con-
straint potential for positioning improvement. In this article, we
proposed a novel minimum distance constraint (MDC) method
that achieves higher positioning accuracy than the traditional
dual-Foot-INS methods. To obtain an accurate and consistent
state estimation under the nonlinear distance constraint problem,
we propose an iterative distance constraint (IDC) algorithm.
The IDC is transformed into an approximate linear constraint
model, and an alternative estimate is obtained by the estima-
tion projection method. To solve the problem that the distance
constraint moment in the traditional method is affected by the
recursive foot positions, we propose a more reasonable and reli-
able minimum distance moment detection (MDMD) method. The
proposed MDMD method maximizes the positioning performance
improvement of the dual-foot pedestrian system. Two rigorous
experimental tests with a long walking trajectory without turn
around and closed loop were conducted to verify the effectiveness
of the proposed method, the positioning error of the proposed
method is reduced by 83.5% and 62.9% compared to the classical
ZUPT and MDC methods, respectively.

Index Terms—Distance constraint algorithm, foot-mounted
inertial navigation system (Foot-INS), pedestrian positioning
system, zero velocity update (ZUPT).

I. INTRODUCTION

LOCATION-BASED services (LBSs) are attracting
tremendous attention owing to their highly potential

applications facilitating peoples’ lifestyles and boosting

Manuscript received 22 February 2023; accepted 25 April 2023. Date
of publication 28 April 2023; date of current version 25 September 2023.
This work was supported in part by the National Key Research and
Development Program of China under Grant 2016YFB0502202, and in part
by the Special Fund of Hubei Luojia Laboratory under Grant 220100007.
(Corresponding authors: Xiaoji Niu; Jian Kuang.)

Tao Liu and Jian Kuang are with the GNSS Research Center, Wuhan
University, Wuhan 430072, Hubei, China (e-mail: liu_tao@whu.edu.cn;
kuang@whu.edu.cn).

You Li is with the State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing and the Hubei Luojia Laboratory,
Wuhan University, Wuhan 430072, Hubei, China (e-mail: liyou@whu.edu.cn).

Xiaoji Niu is with the GNSS Research Center, the Artificial Intelligence
Institute, and the Hubei Luojia Laboratory, Wuhan University, Wuhan 430072,
Hubei, China (e-mail: xjniu@whu.edu.cn).

Digital Object Identifier 10.1109/JIOT.2023.3271309

functionalities in smart cities [1], [2], [3]. Recently, pedestrian
positioning has been the focus of many research efforts as
the core supporting technology of LBS [2], [3], [4], [5], [6],
[7], [8], [9]. The global navigation satellite system (GNSS)
is capable of providing fast and reliable positioning services
for pedestrians in most outdoor environments. However,
the efficiency of GNSS techniques is strongly hindered in
sheltered outdoors and indoor environments [5], [6]. For
this, various alternative solutions have been proposed so far
using WiFi, Bluetooth, radio frequency identification (RFID),
acoustics, Infrared, ultrawideband (UWB), magnetic fields,
or inertial measurement units (IMUs), to provide pedestrian
position information in indoor environments [3], [5], [8].
Unlike other commonly used technologies, such as wireless
signals or vision sensors, inertial-based dead-reckoning (DR)
is completely self-contained. It exhibits a series of interesting
features, including high-short-term positioning accuracy, and
independent of infrastructure and conditions, such as non-
line-of-sight, ambient light, and abnormal electromagnetic
interferences. The inertial-based DR solution is the most
promising and feasible pedestrian positioning approach in
complicated and changeable indoor or satellite-unavailable
scenarios. It presents a highly interesting potential for
applications, such as locating and monitoring emergency
responders in forest fires, residential building fires, or
earthquake disasters [3], [10], [11].

The inertial-based solution faces the problem of
rapid accumulation of positioning errors due to sensor
errors [3], [12], [13]. Therefore, the zero-velocity update
(ZUPT) algorithm-based foot-mounted inertial navigation
system (Foot-INS) has been proposed [14] for pedestrian
positioning applications. During the stance phase, the foot
is in contact with the ground and the velocity of the foot
is zero [15], [16]. The ZUPT algorithm corrects the error
of the INS using the zero velocity during the stance phase
and the Kalman filter (KF). The ZUPT-based Foot-INS has
demonstrated its capability to mitigate the divergence speed
of positioning errors. Unfortunately, the heading error and
the vertical gyro bias in the ZUPT algorithm have been
proved unobservable [17], [18]. Researchers have proposed
many methods to enhance the performance of ZUPT-based
Foot-INS, such as the angular rate update algorithm [19], the
straight-line constraint method [20], [21], the body odometer
model [22], and the building’s structural characteristics
approach [23]. However, the above methods must satisfy their
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Fig. 1. Dual-foot pedestrian positioning. A walking test with about 1.2 m/s
speed illustrates that the number of the stance phase epochs is approximately
75% of the total epochs, while the ratio is about 37% in single-foot solution.
SPD represents the SPD statistics.

respective specific assumptions to be helpful. Furthermore,
these assumptions do not represent the regular motion
characteristic signals during walking.

The dual-foot-mounted inertial sensors solution presents
an alternative to further improve the autonomous positioning
capability compared to the single-foot solution [24]. As shown
in Fig. 1, the ratio of the elapsed time in the stance phase to
the total walking time in the dual-foot pedestrian system is
about twice that of the single-foot solution. Therefore, the
inherent double zero-velocity information can benefit from
establishing a model using the link between the left and right
foot. Usually, the distance information is used to establish
the link between the feet. Two main classification strategies
defined the research work on dual-foot pedestrian systems:
using or not using an additional ranging sensor [25]. In the
ranging-sensor-based solution, a pair of ultrasonic sensors
(e.g., sonar) [24], [26], [27] or visual devices (e.g., cam-
era) [28], [29], [30], are mounted on the left and right foot
to measure the distance between them. However, the ranging-
sensor-based solution is unsuitable for ubiquitous pedestrian
positioning applications due to the need for a specialized
platform, high-hardware cost, and high-system complexity.

In the self-constrained dual-foot solution (i.e., without the
assistance of a ranging sensor), the maximum distance con-
straint is the earliest proposed algorithm. This approach
assumes an upper bound for the distance between the two
systems [31]. Once the relative distance between feet exceeds
this upper bound, the latter is used as an observation to correct
the system. The maximum distance constraint idea was also
utilized in [32]. In addition, the relative position vector of any
foot at the standing ending phase is modeled as a constant to
improve the positioning performance [33]. Nevertheless, this
method is only suitable for straight line walking scenarios. The
work in [34] proposed an inverted pendulum model to estimate
the relative position vector in the body frame between the two
foot-mounted sensors. Due to the heading angle divergence,
there will be errors in the relative position vector derived by
the inverted pendulum model after attitude rotation. In [35],
a comprehensive dual-foot positioning solution was proposed
using the maximum distance constraint, the maximum step
length constraint of a single foot, and the straight line con-
straint algorithms. The maximum distance between feet is
constantly changing with the variation in walking speed and

mode. The minimum distance between feet has manifested as
a constant in most walking scenarios, showing better stability
than the maximum distance. Therefore, the minimum dis-
tance constraint (MDC) algorithm is proposed [36], which
uses the constant minimum distance between the dual-foot-
mounted IMUs to enhance pedestrian positioning. The MDC
idea applied in this study benefits from its strong stability.

An accurate and reasonable distance constraint moment is
essential to ensure positioning performance and reliability in
the self-constrained dual-foot pedestrian system. Almost all
current self-constrained systems [31], [32], [35], [36] use
recursive left and right foot positions to determine when to
execute the distance constraint algorithm. However, the errors
in the recursive positions are divergent and thus gradually
increase with walking time, resulting in an unreasonable deter-
mination of the distance constraint moment. It also leads to a
complete inconsistency between the estimated distance and the
actual fluctuations between the left and right foot. Note that
although the distance constraint moment introduces errors in
the current dual-foot pedestrian systems, it still improves the
positioning performance compared to the single-foot solution.
Therefore, a distance constraint moment detection method that
is independent of the recursive positions is needed for the
dual-foot pedestrian system.

The distance constraint optimal estimation is also crucial
for the dual-foot pedestrian system. The pseudo-observation
approach is a classical strategy [27], [35], [36]. This approach
considers the distance constraint as an additional observa-
tion and combines it with the original measurement model
(e.g., ZUPT) to construct an augmented measurement model.
Due to the nonlinearity of the augmented measurement
model, nonlinear filtering algorithms (e.g., the extended KF
(EKF) [27], [36], the unscented KF (UKF) [37], [38], and
the cubature KF (CKF) [39], [40]) can be used to solve the
distance constraint problem. The quadratic constraint method
is also used to solve the distance constraint problem. This
method considers the distance constraint as a conditional
extremum problem of minimum state variance under the
quadratic constraint condition [31], [41], [42]. However, the
quadratic constraint algorithm necessitates high-computational
complexity and lacks a rigorous covariance matrix estimation.
Although the approximate covariance matrix has been derived
in [31], it suffers from numerical instability. Therefore, an
accurate, consistent, and low-complexity distance constraint
algorithm is valuable for the dual-foot pedestrian system.

The autonomous positioning performance of the previous
dual-foot pedestrian positioning systems is not fully unleashed.
On the one hand, in the distance constraint optimal estima-
tion, the quadratic constraint algorithm [31], [41] encoun-
ters the confusion of inconsistency between the covariance
matrix and the system state, and the pseudo-observation
approach [27], [30], [36] faces the problem of insufficient
estimation accuracy and low scalability. On the other hand,
in the constraint moment determination [31], [32], [35], [36],
the current methods are subject to the recursive position error
divergence, resulting in an incorrect constraint moment.

In this study, we propose a novel enhanced MDC method for
the dual-foot pedestrian system. The proposed MDC method
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Fig. 2. Proposed MDC for the dual-foot pedestrian positioning system. SPD
represents SPD. The system state and the corresponding covariance matrix
estimated by the proposed MDC method are used to update the error state KF.

performs accurate and consistent state estimation. In addition,
the proposed method solves the problem that the constraint
moment is affected by the recursive position drift, and has an
appropriate constraint moment. Compared with the previous
approaches, the proposed method fully exploits the potential
of MDC in the dual-foot pedestrian system and significantly
improves autonomous positioning performance. The proposed
method is expected to continuously and effectively improve
the autonomous positioning capability in most normal walking
scenarios. The contributions of the this article are summarized
as follows.

1) We propose an iterative distance constraint (IDC)
algorithm in the KF framework. The IDC enables accu-
rate and consistent state estimation under the nonlinear
distance constraint problem. Moreover, the IDC has the
advantage of low-computation complexity.

2) We observed a new phenomenon between the minimum
distance moment and the stance phase based on statis-
tical analysis. Then, we designed a minimum distance
moment detection (MDMD) method using the newly dis-
covered phenomenon. The MDMD is independent of the
recursive positions. Therefore, it improves the precision
of the MDMD, reduces the algorithm complexity, and
allows a more reasonable and accurate position estimate
compared to classical methods.

3) We have comprehensively evaluated the proposed
method through rigorous experimental tests with a long
walking trajectory without turn around and closed loop,
and demonstrated the effectiveness of the proposed
method.

The remainder of this article is organized as follows. An
overview of the proposed method is provided in Section II.
In Section III, we describe the basic part of the proposed
method, and present the IDC algorithm. Section IV describes
the phenomenon between the minimum distance moment
and the stance phase, and provides the MDMD method.
Section V presents the experimental results and relevant com-
parative analysis to traditional methods. Finally, Section VI
summarizes and concludes this article.

II. SYSTEM OVERVIEW

Fig. 2 shows that a reliable IMU data acquisition is neces-
sary for the proposed dual-foot pedestrian positioning method.

TABLE I
MAIN CHARACTERISTICS OF THE MEMS INERTIAL MODULE

(a) (b)

Fig. 3. Bluetooth-based time synchronization. Two inertial sensors were
mounted on a flat plate to perform the same movement process. The time
differences between the two sensors before and after the time synchronization
operation are 170 and 5 ms, respectively. (a) Before time synchronization.
(b) After time synchronization.

The essential component of the proposed method includes
ZUPT-based Dual-Foot-INS and KF-based state estimation.
The straightforward and elegant MDMD and the effective IDC
algorithms are the unique attributes of the proposed MDC
method that distinguish it from previous ones.

During the data acquisition process, two compact inertial
modules were required to be tightly attached to the heels of
the pedestrian’s right and left shoes to obtain stable and high-
quality IMU data. The two inertial modules used in this study
had the same accuracy level. The inertial module consists of
a low-cost MEMS IMU, power supply module, low-energy
Bluetooth module, data storage module, and a general mul-
tiprotocol system-on-chip [43]. The technical characteristics
of the inertial module are summarized in Table I. Moreover,
a smartphone app was used to control the start and end of
the inertial modules via Bluetooth signal, similar to the app
reported in our previous work [23].

Time synchronization of the multiple inertial sensors is
critical for the proposed method. For this, Bluetooth signals
exchanged between smartphones and inertial sensors were
used to obtain the time difference between the multiple
devices. Then, the data sensed from the multiple inertial sen-
sors are unified under the same time system using linear inter-
polation. To verify the accuracy of the Bluetooth-based time
synchronization scheme, we mounted multiple inertial sensors
on a flat panel and performed the same motion simultaneously.
The time synchronization accuracy is better than 10 ms based
on numerous experimental tests. Therefore, we demonstrate
that it can meet the accuracy requirements of the dual-foot
pedestrian system. Fig. 3 illustrates the Bluetooth-based time
synchronization scheme.

III. DUAL-FOOT PEDESTRIAN POSITIONING

In this section, we first introduce the necessary components
of the proposed dual-foot pedestrian positioning method,

Authorized licensed use limited to: Wuhan University. Downloaded on September 28,2023 at 01:25:20 UTC from IEEE Xplore.  Restrictions apply. 



16934 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 19, 1 OCTOBER 2023

i.e., the inertial navigation algorithm and the stance phase
detection (SPD). Then, the state space and ZUPT models are
constructed. Finally, we propose the novel MDC algorithm and
analyze its computational complexity.

A. Inertial Navigation Algorithm

The primary principle of the INS is to use the previous
recursive navigation state (i.e., position, velocity, and atti-
tude), incorporated with the angular rate and specific force
measurements, to calculate the current navigation state of the
foot through numerical integration [13]. We used the well-
known north-east-down geographic coordinate system and the
front-right-down coordinate system as the navigation coordi-
nate frame (i.e., n frame) and the body coordinate frame (i.e.,
b frame), respectively. The coordinate systems are defined in
detail in [44]. The components related to the Earth’s rotation
are neglected [23] due to considerable noise in the angular
rate measured by the MEMS inertial sensor.

The attitude matrix Cn
b, velocity vn

k , and position rn
k update

processes are given as follows:

Cn
b,k = Cn

b,k−1

[
I + sin ρ

ρ

[
ρ×]+ 1 − cos ρ

ρ2

[
ρ×]2

]
(1)

vn
k = vn

k−1 + Cn
b,k−1νsf + gn�t (2)

rn
k = rn

k−1 + 0.5
(
vn

k−1 + vn
k

)
�t (3)

where ρ ≈ αk + (1/12)αk−1 × αk is the rotation vector asso-
ciated with angular rate; ρ is the magnitude of ρ; αk ≈ ω̃

b
k�t,

with ω̃
b
k being the angular rate after removal of the gyroscope

biases; νsf ≈ γ k+(1/2)αk×γ k+(1/12)(αk−1×γ k+γ k−1×αk)

is the rotation vector associated with the specific force;

γ k ≈ ˜f
b
k�t, with ˜f

b
k being the specific force after removal

of the accelerometer biases; gn = [0 0 g]T, with g being
the gravitational acceleration; and �t is the sampling interval.

In the dual-foot pedestrian system, the tester needs to stand
stationary for a few seconds. The initial gyroscope biases can
be estimated by averaging the angular rate measurements in
the stand stationary phase. Moreover, the initial roll and pitch
angle can be calculated by incorporating the specific force and
local gravity [45].

B. Stance Phase Detection

An accurate and robust SPD algorithm is the kernel for
the proposed dual-foot pedestrian positioning. The well-
known generalized likelihood ratio test (GLRT) algorithm [16]
exhibits excellent performance in most normal walking scenar-
ios. This approach relies on the hypothesis that the measured
specific force in the stance phase is the gravitational accelera-
tion projection on the b frame and that the sensed angular rate
is theoretically zero. The GLRT algorithm was used to detect
the stance phase of the left and right foot, with a detection
window size and threshold set as 5 and 6000, respectively.

A small number of abnormal detected points are inevitable
in the GLRT, even in normal walking [23], [46]. Therefore,
we use the approach in our previous work [23] to eliminate the
abnormal non-zero-velocity points during the stance phase and
the abnormal zero-velocity points during the swing phase. This

approach has been demonstrated to improve the reliability and
accuracy of the GLRT algorithm by using an objective law that
the gait phase (swing or stance phase) is continuous during a
period of time in normal walking.

C. State-Space Construction and ZUPT Model

We define the error state of position and velocity as the
estimated state x̂, subtracting the true state x, i.e., δx = x̂ − x,
where x can represent rn and vn. The attitude error φ is defined
as Ĉ

n
b = [I3 − (φ×)]Cn

b, where Ĉ
n
b and Cn

b are the estimated
and true attitude matrices, respectively. The measured inertial
signal is modeled as the sum of true signal, sensor biases, and
white noise. The gyroscope biases bg and accelerometer biases
ba can be modeled as a first-order Markov process. Moreover,
the Earth’s rotational components are neglected and explained
in Section III-A. The system state of a single inertial system
is defined as follows:

δxs =
[(

δrn)T (
δvn)T φT bT

g bT
a

]T
. (4)

The continuous-time dynamic model of the single inertial
system is derived as follows:

δẋs = Fsδxs + Ws (5)

Fs =

⎡
⎢⎢⎢⎢⎣

03 I3 03 03 03
03 03 f n× 03 Cn

b
03 03 03 −Cn

b 03
03 03 03 Mg 03
03 03 03 03 Ma

⎤
⎥⎥⎥⎥⎦; Ws =

⎡
⎢⎢⎢⎢⎣

0
Cn

bwa

−Cn
bwg

wbg

wba

⎤
⎥⎥⎥⎥⎦ (6)

where f n = Cn
bf b is the specific force projection on the n

frame; Mg = diag([τbg τbg τbg]); Ma = diag([τba τba τba]); τba

and τbg are the correlation times, which are set to 1800 s; Ws is
the system noise, which is assumed to be zero-mean Gaussian
white noise with the correlation covariance matrix Qs; wa and
wg are the measurement white noises of the accelerometer
and gyroscopes, respectively; and wba and wbg are the driving
white noises of the bias model.

By discretizing the continuous-time dynamics model (5), we
can obtain a discrete-time dynamics model for a single inertial
system as follows:

δxs,k = 	s
k,k−1δxs,k−1 + ws,k−1 (7)⎧⎨

⎩
	s

k,k−1 = exp
[
Fs,k−1�t

] ≈ I + Fs,k�t

Qs,k ≈ 0.5

[
	s

k,k−1Qs

(
	s

k,k−1

)T + Qs

]
�t

(8)

where 	s
k,k−1 is the discrete transform matrix, and Qs,k is the

covariance matrix of the discrete system noise ws,k−1.
In the dual-foot pedestrian system, a centralized KF is used

to estimate the navigation state of the left and right foot
simultaneously. The system state is as follows:

δx = [
δxT

L δxT
R

]T
. (9)

The discrete-time system dynamics model of a dual-foot
pedestrian system is given as follows:

δxk = 	k,k−1δxk−1 + wk−1 (10)

	k,k−1 =
[
	L

k,k−1 015×15

015×15 	R
k,k−1

]
; wk−1 =

[
wL

k−1
wR

k−1

]
(11)
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where superscripts L and R represent the state information
related to the left and right foot, respectively. Obviously, the
system noise wk still obey the Gaussian noise distribution with
zero mean and covariance matrix Qk.

Once any of the two feet are detected in the stance phase
by the SPD method described in Section III-B, the zero veloc-
ity can be used as an independent observation with zero mean
white noise. Thus, it can be used to correct the dual-foot pedes-
trian system. The ZUPT model in the dual-foot pedestrian
system is given as follows:⎧⎪⎪⎨

⎪⎪⎩

v̂n
L,k = [

H0 03×15
]
δxk + εv; case 1

v̂n
R,k = [

03×15 H0
]
δxk + εv; case 2[

v̂n
L,k

v̂n
R,k

]
=
[

H0 03×15
03×15 H0

]
δxk +

[
εv

εv

]
; case 3

(12)

where v̂n
L,k and v̂n

R,k are the left and right foot veloci-
ties estimated by the INS at time tk, respectively; H0 =
[03×3 I3×3 03×9] is the basic measurement matrix; “case 1”
and “case 2” represent the cases where the left and right foot
are detected in the stance phase, respectively; “case 3” repre-
sents the case where both feet are in the stance phase; and εv is
the measurement noises, its covariance matrix R = E[(εvε

T
v )]

is set to diag[(0.03)23×1].

D. Proposed Minimum Distance Constraint Algorithm

Although the ZUPT algorithm has been used to correct the
cumulative error in INS, the position error still cannot be elim-
inated due to the unobservable heading error effect. Regular
distance changing information between the left and right foot
has been widely demonstrated to enhance autonomous pedes-
trian positioning capability [31], [35], [36]. The positioning
performance and robustness of the minimum distance-based
solution are better than the maximum distance-based solu-
tion. This is mainly because the fluctuation of the minimum
distance is smaller in various walking speeds and pattern sce-
narios. Therefore, this study uses the minimum distance as an
independent constraint to improve the autonomous pedestrian
positioning capability.

In traditional approaches, the known pseudo-observation
algorithm is often used to deal with the optimal state esti-
mation under the MDC [36]. First, the minimum distance
is considered an additional observation and is incorporated
into the ZUPT model to construct an augmented measure-
ment equation. Then, the nonlinear Kalman filtering algorithm
(e.g., EKF, UKF, and CKF) is used to implement the naviga-
tion state estimation. However, the traditional method does not
fully exploit the improvement of the MDC on the positioning
performance because of the solid nonlinear characteristic of
the MDC information. Therefore, we propose an IDC algo-
rithm to obtain an accurate and consistent state estimate in
the dual-foot pedestrian positioning system.

The estimated distance �dm between the left and right foot
at the minimum distance moment tm is given as follows:

�dm = ∥∥�rn
L,m − �rn

R,m

∥∥ (13)

where �rn
m = r̂n

m−δrn
m is the position after the ZUPT correction;

r̂n
m is foot position estimated by the INS; δrn

m is the estimated

position error by KF; and superscripts L and R represent the
state information related to the left and right foot, respectively.

Although the fluctuation of the minimum distance between
the left and right foot is relatively stable, it will inevitably
be smaller than the stable constant minimum distance due
to the irregular walking pattern such as cross-step. Thus,
the IDC method is performed only when �dm is greater than
c0 (�dm > c0), where c0 is the set threshold and is mea-
sured during the initial stationary standing phase. The state
estimation under the distance constraint in the dual-foot pedes-
trian system can be formulated as the following optimization
problem:

x̆m = arg min
x̃m

(
x̃m − �xm

)TWm
(
x̃m − �xm

)
(14)

s.t.
∥∥r̃n

L,m − r̃n
R,m

∥∥2 − c2
0 = 0 (15)

where x is the navigation state of the dual-foot pedestrian
system and its error δx is defined in (9); x̆m is the constrained
estimate of xm; x̃m is an optimization variable of xm; �xm is
the estimate by the ZUPT algorithm and KF; Wm = P−1

m is
the weighting matrix, Pm is the estimated covariance matrix
by KF; and rn

L = x1:3 and rn
R = x16:18 are the position state of

the left and right foot.
The distance constraint between the left and right foot in

(15) can be rewritten as follows:

g(xm) = xT
mMxm − c2

0 = 0 (16)

M =

⎡
⎢⎢⎣

I3×3 03×12 −I3×3 03×12
012×3 012×12 012×3 012×12
−I3×3 03×12 I3×3 03×12
012×3 012×12 012×3 012×12

⎤
⎥⎥⎦. (17)

We suppose that the optimized navigation state xm contains
an approximate estimate x̄m. In that case, the distance con-
straint function g(xm) can be expanded by the Taylor series
expansion around the approximate estimate x̄m as follows:

g(xm) ≈ g(x̄m)+ 2x̄T
mM(xm − x̄m) = Axm − b (18)

where A = 2x̄T
mM, and b = 2x̄T

mMx̄m − g(x̄m).
Therefore, on the premise that an approximate estimate x̄m

is known, the distance constraint estimation in the dual-foot
pedestrian system can be approximately formulated as the
following linear optimization problem:

x̆∗
m = arg min

x̃m

(
x̃m − �xm

)TWm
(
x̃m − �xm

)
(19)

s.t. Ax̃m − b = 0 (20)

where x̆∗
m is the constrained estimate of xm in the presence of

an approximate value x̄m.
The nonlinear distance constraint can be converted into

an approximate linear constraint problem when an approx-
imate state estimate x̄m is known. By following the basic
idea of the estimation projection method [47], we projected
the unconstrained estimate onto the approximate linear con-
strained surface. By using the Lagrange multiplier technique,
the solution of the optimization problem in (19) and (20) can
be obtained as follows:

x̆∗
m = �xm − PmAT(APmAT)−1(

A�xm − b
)
. (21)
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We can reasonably infer from (18)–(21) that the constrained
estimate x̆∗

m meets the distance constraint more than �xm. We
assumed that the estimates x̆∗

m and x̄m both revolve around the
true state xm. Based on this assumption, we replace the approx-
imate estimate by the last constrained estimate, and deduce a
series of alternative estimates through iteration updates. The
most probable estimate is determined to be the final con-
strained estimate x̆m. In the normal walking scenario, the
ZUPT-based pedestrian system has a considerable autonomous
positioning ability (its accuracy usually is better than 5 %
of the walking distance), and its positioning error will not
increase sharply. Therefore, the navigation state obtained by
ZUPT in the dual-foot pedestrian system can be used as an
initial approximate estimate, i.e., x̆∗

m,0 = �xm. The iterative
constrained estimate x̆∗

m,l+1 is given as follows:

x̆∗
m,l+1 = �xm − PmAl

T(AlPmAl
T)−1(

Al�xm − bl
)

(22)

where Al = 2(x̆∗
m,l)

TM, and bl = 2(x̆∗
m,l)

TMx̆∗
m,l − g(x̆∗

m,l).
In each iteration update, the constrained covariance matrix

P̆m,l is given as follows:

P̆m,l+1 = E
[(

xm − x̆∗
m,l+1

)(
xm − x̆∗

m,l+1

)T]

= E
[
Jl
(
xm − �xm

)(
xm − �xm

)TJT
l

]
= JlPmJT

l (23)

where Jl = I − PmAl
T(AlPmAl

T)−1Al.
We can obtain a series of estimates through iterative updates.

The criterion for determining the optimal estimate x̆m is to
minimize the function (x̆m − �xm)

TWm(x̆m − �xm). The maxi-
mum number of iterations in the proposed IDC algorithm is
set to 5 through numerous experimental analysis.

E. Computational Complexity Analysis

We define the computational complexity O as the number
of basic mathematical operations (i.e., addition, subtraction,
multiplication, and division). We used the most straightforward
matrix multiplication and classic Gauss-Jordan elimination
methods [48] to analyze the computational complexity of
the IDC algorithm. For an n × m matrix A, an m × p
matrix B, and an n × n matrix C, we have O(AT) = nm,
O(AB) = n(2m − 1)p, and O(C−1) = n3.

The dimension of the system state x is 30 × 1. Since the
matrix M is a sparse matrix with only 0, 1, and −1, the spe-
cific forms of the updated variables Al and bl in (22) can be
simply calculated. Therefore, the computational complexity of
the variables Al and bl in a single update process is as follows:

O(Al) = 12, O(bl) = 24. (24)

After updating Al and bl, we define C1 = AT
l , C2 = PmC1,

C3 = AlC2, C4 = C−1
3 , C5 = Al�xm − bl, C6 = C4C5,

C7 = C2C6, and C8 = �xm − C7. The variable Al contains
24 zero elements. Thus, we derive{

O(C1) = 6, O(C2) = 330, O(C3) = 11, O(C4) = 1
O(C5) = 24, O(C6) = 1, O(C7) = 30, O(C8) = 30.

(25)

The computational complexity of the IDC algorithm in one
iteration in (22) is as follows:

O
(
x̆∗

m,l

) = O(Al)+ O(bl)+ O(C1)+ O(C2)+ O(C3)

+ O(C4)+ O(C5)+ O(C6)+ O(C7)

+ O(C8) = 469. (26)

In addition, Jl = I − C2C4Al, we derive

O(C2C4Al) = 210, O(Jl) = 180. (27)

The computational complexity of the constrained state
covariance matrix in (23) is given as follows:

O
(

P̆m,l

)
= O(Jl)+ O

(
JT

l

)+ 2n2(2n − 1)

= 180 + 204 + 106200 = 106584. (28)

By setting the number of iterations l, we express the
computational complexity of the IDC algorithm OIDC as
follows:

OIDC = l × O(Jl)+ O
(

P̆m,l

)
= l × 469 + 106584. (29)

Note that the effect of zero elements in variables and
matrices is considered in the proposed algorithm’s com-
putational complexity analysis. The IDC algorithm has a
low-computational effort and does not incur a computational
burden in practical applications.

IV. MINIMUM DISTANCE MOMENT DETECTION

The minimum distance moment determination in each gait
cycle is crucial for the proposed MDC method, i.e., determin-
ing tm in Section III-D. In this section, we first review the
limitations of the current methods. Then, we present a new
phenomenon associated with the minimum distance between
the left and right foot. Finally, a straightforward MDMD
method is proposed.

A. Current Distance Constraint Moment Detection Methods

In the classical maximum distance constraint method
(“MaxDist”) [31], [35], the constraint algorithm is activated
only when the estimated distance between the left and right
foot exceeds a set upper bound and the time difference
between the current and the nearest constraint events exceeds
a set time interval. In our previous proposed MDC algorithm
(“MinDist”) [36], the constraint moment is jointly determined
by the minimum distance information of the historical buffer
positions within one gait cycle, the time interval between two
adjacent constraint events, and the initially set threshold.

The estimated error of the pedestrian position will inevitably
increase in long-term walking scenarios. The constraint
moment in the current methods is closely related to the
recursive foot position with increasing error. The current
approaches [31], [35], [36] may result in potentially serious
inconsistencies between the estimated and the actual dis-
tance. This inconsistency becomes more pronounced as the
walking distance increases, leading to potentially unreason-
able and low robustness of the pedestrian positioning system.
As shown in Fig. 4, after 400 s of continuous walking, the
estimated distances between the left and right foot using the
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Fig. 4. Estimated distance between the left and right foot using the classical
methods. The actual distance varies regularly in the range of 0.3–0.7 m.

Fig. 5. Angular rate module and distance change between left and right foot
in the dual-foot pedestrian system. A camera-based motion capture system
provides the reference distance between the left and right foot.

classical methods are both unreasonable. The current methods
may result in an under-utilized distance constraint, limiting its
potential for positioning performance improvement.

B. Minimum Distance Moment Phenomenon

In the dual-foot pedestrian system, the maximum distance
moment corresponds to that when one foot just touches the
ground (the specific force modulus at this moment rises to
peak due to the strike of the fall to the ground). However, the
minimum distance moment is difficult to determine. As shown
in Fig. 5, the minimum distance moment is usually located
within the stance phase of one foot while the other is in the
swing phase. To explore the characteristics of the minimum
distance change between the left and right foot, a minimum
distance moment coefficient κ is defined as follows:

κ = (tmin − tfst)/(tend − tfst) (30)

where tfst and tend are the start and end times of the stance
phase, and tmin is the minimum distance moment. Note that
the durations tmin − tfst and tend − tfst vary with different step
lengths, different pedestrians, and different walking speeds.

Based on careful observation and analysis, we notice that:
the minimum distance moment coefficient κ may fluctuate
around a constant value in a normal walking scenario.
Therefore, we designed the following experimental tests to
verify our speculation.

In the experimental tests, two inertial modules (described
in Table I) were tightly mounted on the heels of the subject’s
left and right shoes, as shown in Fig. 1. Three subjects were
instructed to walk 12 times at normal speed and gait pattern
along a straight line trajectory. Each subject was asked to stand
still for more than 30 s at the beginning and end of each test.
The reference position of the left and right foot provided by
a camera-based motion capture system.

(a) (b)

(c) (d)

Fig. 6. Analysis of minimum distance moment coefficient κ . (a) Subject #1.
(b) Subject #2. (c) Subject #3. (d) Reference trajectories.

Fig. 7. Discovered new phenomenon associated with the minimum distance
between the left and right foot.

The subject was approximately 37% in the stance phase
during each gait cycle in the normal walking process, i.e.,
75 epochs for the 200 Hz sampling frequency. Experimental
analysis shows that the minimum distance moment coefficient
κ fluctuates in the interval of 0.50–0.70. Therefore, we set
five constant coefficients (0.50, 0.55, 0.60, 0.65, and 0.70)
for statistical analysis. We calculate the probability distribution
function (PDF) that the minimum distance moment coefficients
of different subjects were located in five constant coefficient
sets by the closest rule (e.g., the coefficients between 0.575
and 0.625 were counted into the 0.60 set).

As shown in Fig. 6, the experimental test results demon-
strate that more than 60 % of the minimum distance moment
coefficients for the three subjects fell within the 0.60 group.
Therefore, it is reasonable to believe that the minimum dis-
tance moment coefficient κ between the left and right feet of
a pedestrian fluctuates around 0.60 in a normal walking sce-
nario. Fig. 7 gives the discovered new phenomenon associated
with the minimum distance between the left and right foot.

C. Proposed MDMD Method

We propose an MDMD method by the discovered
phenomenon in Section IV-B, the minimum distance moment
coefficient κ is 0.60, and the moment tmin is as follows:

tmin = (1 − κ)× tfst + κ × tend. (31)

The proposed method needs to be delayed for approximately
half the gait cycle. Since the influence of the short delay time
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Fig. 8. Estimated distance using the proposed MDMD method.

(a) (b)

Fig. 9. Distance error distributions obtained by different methods in the
statistical tests. (a) Cumulative distribution function (CDF) of the estimated
distance error. (b) PDF of the distance error using the proposed method.

TABLE II
ERROR STATISTICS OF ESTIMATED DISTANCE BETWEEN THE LEFT AND

RIGHT FOOT USING DIFFERENT METHODS (m)

on the real-time positioning is weak (about 0.5 ∗ 75/200 =
0.1875 s), we do not adopt any time delay processing strat-
egy such as the delayed KF algorithm. The proposed MDMD
method requires only the time information at the start and end
of the stance phase in each gait cycle. Since the minimum dis-
tance moment coefficient is a ratio, the detection method can
theoretically obtain the same results at different SPD thresh-
olds. In this study, we use the SPD method in Section III-B
to obtain the start time tfst and end time tend.

We compared the proposed MDMD method to the classical
methods in [31] and [36]. Fig. 8 shows the estimated distance
by the proposed MDMD method, and the distance error dis-
tributions obtained by different methods in the statistical tests
are given in Fig. 9. Table II summarizes the distance error
statistics, where Mean, RMS, MAX, and Std represent the
mean, root mean square, maximum, and standard deviation,
respectively.

Compared to the MaxDist method, the RMS and Std of the
distance estimation error of the proposed method are reduced
by 80 % and 20 %, respectively. Compared to the MinDist
method, the RMS and Std of the distance estimation error of
the proposed method are reduced by 80 % and 79 %, respec-
tively. Therefore, the proposed MDMD method has higher
accuracy, more reasonable, and more stable distance estimation
in the dual-foot pedestrian positioning system than the classi-
cal methods. In the following experimental section, we shall

Algorithm 1 Proposed Novel Enhanced MDC Method for the
Dual-Foot Pedestrian Positioning System

input: inertial sensor data fb
ib and ωb

ib, initial navigation and KF filter
state, and minimum distance threshold c0.

output: navigation state and corresponding covariance matrix.
1: for k = 1:n do
2: update navigation state by Section III-A, time update process

of KF using the dynamic model in (10), and detect stance
phase by Section III-B.

3: if any one of the two feet is in the stance phase then
4: measurement update of KF using the ZUPT model in (12),

error feedback of KF.
5: if minimum distance moment is detected in Section IV-C,

and �dm > c0 then
6: set: x̆∗

m,0 = �xm, Wm = P−1
m , and l = 1.

7: while l ≤ 5 do
8: calculate the iterative constrained estimate using

(22), (23) and update l = l + 1.
9: end while

10: determine the optimal estimate x̆m and covariance matrix
P̆m, update navigation state, and update covariance
matrix Pm = P̆m of KF.

11: end if
12: end if
13: end for

further demonstrate the improvement of the proposed MDMD
method for pedestrian positioning performance.

The detailed implementation of the proposed novel
enhanced MDC method for the dual-foot pedestrian position-
ing system is summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS

A. Experimental Description

In order to evaluate the improvement of the proposed novel
MDC method on the positioning performance of the dual-
foot pedestrian system, we have conducted two experimental
tests under rigorous scenarios with a walking trajectory of
about 1000 m without turn around and closed loop. The long-
distance walking trajectory without turn around and closed
loop helps to objectively and genuinely reflect the autonomous
pedestrian positioning performance. In addition, the straight-
line constraint and building direction-assisted (e.g., heuristic
drift elimination) algorithms may not meet their hypothesis
condition and fail in challenging practical applications.

The two experimental test regions were located in the out-
door open sky area in December 2021 in Wuhan City. The
reference trajectories of the experimental tests are shown in
Fig. 10, which were provided with a post-processed kinematic
carrier-phase differential GNSS (POST-RTK) technique. The
positioning accuracy of the POST-RTK technique in the open
sky scenario is approximately 0.05 m. The multiantenna GNSS
receiver was mounted on the back of the tester. Considering
the difference between the back and the foot, the accuracy of
the reference trajectories was better than 0.5 m.

To verify the effectiveness of the proposed MDC
method in the dual-foot pedestrian positioning system, we
compared the following seven methods: 1) ZUPT algo-
rithm; 2) classic maximum distance constraint algorithm
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Fig. 10. Ground reference trajectories of the two experimental tests. (a) Test
#1. (b) Test #2.

(MaxDist) [31]; 3) classic MDC algorithm (MinDist) [36];
4) proposed MDMD + EKF-based pseudo-observation con-
straint algorithm [27] (“Our_01”); 5) proposed MDMD +
UKF-based pseudo-observation constraint algorithm [37], [38]
(“Our_02”); 6) proposed MDMD + CKF-based pseudo-
observation constraint algorithm [39], [40] (“Our_03”); and
7) proposed MDC method (“Our_04”).

The experimental parameter settings were the same for the
seven methods. The initial system covariance matrix P0 and
the system noise matrix Qk can be set by Table I, and the min-
imum distance threshold c0 is set 0.3 m by the experimental
analysis result in [36]. The POST-RTK technique provided the
initial position, the initial velocity was zero vector, and the ini-
tial roll and pitch angles were determined by standing still for
a few seconds [45]. Moreover, we used two reference points
to determine the initial yaw angle [43]: the first (rx

s,1, ry
s,1) is

the initial position, and the second (rx
s,2, ry

s,2) is a reference
point 10 m away from the first point. The initial yaw angle ψs

is given as follows:

ψs = arctan

(
ry

s,2 − ry
s,1

rx
s,2 − rx

s,1

)
− arctan

(
r̂y

s,2 − ry
s,1

r̂x
s,2 − rx

s,1

)
(32)

where s ∈ {L,R}, and L and R represent the state information
related to the left and right foot, respectively; and (r̂x

s,2, r̂y
s,2)

is the estimated position by ZUPT and KF.

B. Positioning Performance of Different Algorithms

Figs. 11 and 12 show the estimated position trajectories
using seven methods in experimental tests #1 and #2, respec-
tively. Figs. 13 and 14 show the uncertainty of the north position
error and heading error in experimental test #1, respectively.
As can be seen in Figs. 13 and 14, the other six distance
constraint algorithms achieve lower uncertainties in position
and heading errors compared to the ZUPT algorithm. The

(a) (b)

Fig. 11. Estimated trajectories using different methods in test #1. (a) Left
foot. (b) Right foot.

(a) (b)

Fig. 12. Estimated trajectories using different methods in test #2. (a) Left
foot. (b) Right foot.

(a)

(b)

(c)

Fig. 13. Uncertainty of the north position estimation error obtained by
different methods in experimental test #1, which is the root of the diagonal
element of the estimated covariance matrix. (a) Left foot,

√
P1,1. (b) Right

foot,
√

P16,16. (c) Relative position error,
√

P1,1 + P16,16 − 2P1,16.

(a)

(b)

(c)

Fig. 14. Uncertainty of heading estimation error obtained by different meth-
ods in experimental test #1. (a) Left foot,

√
P9,9. (b) Right foot,

√
P24,24.

(c) Relative heading error,
√

P9,9 + P24,24 − 2P9,24.

experimental result proves that the distance constraint between
the left and right foot improves the state estimation accu-
racy of the KF, which is beneficial for further improving the
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(a) (b)

(c) (d)

Fig. 15. Positioning error using different methods in experimental tests.
(a) Left foot in test #1. (b) Right foot in test #1. (c) Left foot in test #2.
(d) Right foot in test #2.

autonomous pedestrian positioning performance. In addition,
the uncertainty of the relative heading error and the relative
position error in the six distance constraint algorithms is
convergent and smooth, instead of gradually diverging as in
the ZUPT algorithm. That is, the introduction of the distance
constraint transforms the relative heading and position states
between the left and right foot in the dual-foot pedestrian
system from unobservable to observable under the Kalman fil-
tering framework, and it also validates the theoretical analysis
in [27]. Therefore, the distance constraint between the left and
right foot significantly improves the observability, state esti-
mation accuracy, and positioning performance of the dual-foot
pedestrian system.

The positioning error variations with increasing walking
distance in the two experimental tests are given in Fig. 15.
We also statistically analyzed the positioning errors of different
walking distances using the seven methods in the two exper-
imental tests. The statistical results are listed in Table III. It
can be seen that the average positioning accuracy (i.e., posi-
tion error drift rate) of the ZUPT algorithm decreases from
2.07 % (200 m) to 8.2 % (1000 m). The result indicates that
the positioning error in the ZUPT algorithm increases curvi-
linearly with the walking distance rather than simply linearly.
These nonlinear positioning error divergence characteristics of
the ZUPT method were also analyzed theoretically in [18].
Note that since the ground is flatter indoors than outdoors,
the pedestrian system has the same or better positioning
performance in indoor environments.

As shown in Figs. 11(b), 12(b), and 15(b) and (d), the
pedestrian position estimated by the ZUPT method has a
large uncertainty due to the residual gyroscope bias effect,
which may cause the positioning error to diverge faster. In the
other six distance constraint methods, the mutual constraint
of the left and right foot makes the relative gyroscope bias
in the dual-foot system can be estimated, which reduces the
estimation uncertainty and improves the positioning accuracy.

The minimum distance between the left and right foot
is more stable and robust than the maximum distance

TABLE III
POSITIONING ERROR STATISTICS AT DIFFERENT WALKING DISTANCES

USING DIFFERENT METHODS IN EXPERIMENTAL TESTS (m)

information. Therefore, the method MinDist has better
positioning performance than the MaxDist. The average posi-
tioning errors of the two classic methods in the test #1
(1100 m) were 5.2 % and 4.0 %, respectively. The average
positioning errors of the two methods in the test #2 (1050 m)
were 4.2 % and 3.6 %, respectively. Compared to method
MaxDist, method MinDist improves positioning performance
by approximately 19 % in the two experimental tests.

The average positioning errors of the Our_01 method
in the two experimental tests were 2.54 % (1100 m) and
3.06 % (1050 m), respectively, which improved the position-
ing performance by 26 % compared to the MinDist method.
The experimental test results also demonstrate the reason-
ableness of the proposed MDMD method and its effective-
ness in improving the autonomous pedestrian positioning
performance.

Methods Our_02 and Our_03 use the pseudo-observation
algorithm similar to the Our_01 method to achieve the distance
constraint optimal estimation, but differ in the nonlinear KF
selection. Methods Our_01, Our_02, and Our_03 use the EKF,
UKF, and CKF algorithms. In the two experimental tests, the
positioning accuracy of the Our_02 method was slightly higher
than that of the Our_01 method, due to the better nonlin-
ear state estimation performance of UKF than EKF. Since
the CKF has a more powerful nonlinear processing capability
than the EKF and UKF [39], Method Our_03 has a higher
accuracy positioning capability than methods Our_01 and
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TABLE IV
RUN TIME OF DIFFERENT METHODS IN EXPERIMENTAL TESTS (s)

Our_02. The positioning errors of method Our_03 in the two
experimental tests were 1.98 % (1100 m) and 2.10 % (1050 m),
respectively.

The Our_04 method achieves the highest positioning accu-
racy in the two experimental tests with 1.26 % (1100 m)
and 1.56 % (1050 m), respectively. Compared to the ZUPT,
MinDist and Our_01 methods, method Our_04 improves the
average positioning performance in the two experimental tests
by 83.50 %, 62.9 %, and 49.6 %, respectively. The experi-
mental results indicate that the proposed IDC algorithm can
fully utilize the distance constraint information better than
the pseudo-observation method, thus achieving better state
estimation accuracy and positioning performance. Therefore,
the proposed novel MDC method improves the positioning
performance of the dual-foot pedestrian system.

The seven methods for the dual-foot pedestrian system were
programmed on MATLAB 2020b and executed on a com-
puter with AMD Ryzen 7 4800H CPU @2.90 GHz and 16-GB
memory. Table IV summarizes the run time of the seven
methods in the two experimental tests. Method MaxDist has
a higher computational complexity for state estimation, and
method MinDist requires caching and updating the position
information of the previous step. Thus, the run time of these
two methods is longer than that of the ZUPT method.

Since the proposed MDMD method only requires the start
and end times of the stance phase, the running time of method
Our_01 is shorter than that of method MinDist. The exper-
imental results also demonstrate that the proposed MDMD
method in Section IV reduces the algorithm complexity for
the dual-foot pedestrian system. Compared to methods Our_02
and Our_03, method Our_04 has a shorter running time.
Therefore, the proposed MDC method in Section III-D reduces
the computational complexity compared to the UKF-based and
CKF-based pseudo-observation constraint algorithm. Note that
the inertial navigation, SPD, and the ZUPT-based KF algo-
rithms account for most of the running time in the different
methods, rather than the distance constraint algorithm.

C. Parameter Analysis of the Proposed Method

In the proposed novel MDC method, the minimum distance
moment coefficient κ was set to 0.60 according to the statis-
tical analysis in Section IV. Fig. 6 indicates that more than
20 % of the coefficients still fluctuate around 0.55 and 0.65.
Therefore, we further analyzed the positioning performance
of the proposed method (Our_03) under the three minimum
distance moment coefficient settings (0.55, 0.60, and 0.65)
in experimental test #1. Figs. 16 and 17 show the estimated
trajectories and positioning errors obtained by the proposed
method under the three minimum distance moment coeffi-
cient settings, respectively. The positioning error statistics with
different walking distances are summarized in Table V.

(a) (b)

Fig. 16. Estimated trajectories of the proposed method with three minimum
distance moment coefficients in experimental test #1. (a) Left foot. (b) Right
foot.

(c) (d)

Fig. 17. Positioning error of the proposed method with three minimum
distance moment coefficient settings in experimental test #1. (a) Left foot.
(b) Right foot.

TABLE V
POSITIONING ERROR STATISTICS OF THE PROPOSED METHOD WITH

THREE MINIMUM DISTANCE MOMENT COEFFICIENTS (m)

The average positioning errors of the proposed method
were approximately 2.58 %, 1.26 %, and 2.87 % for the
three minimum distance moment coefficient setting schemes,
respectively. The positioning performance of the second
scheme (i.e., κ = 0.60) was approximately twice as good
as the other two schemes. The experimental results fur-
ther demonstrate the phenomenon that the minimum distance
moment coefficient κ between the left and right foot fluctuates
around 0.60 in a normal walking scenario.

In addition, we analyzed the effect of the SPD threshold
on the positioning performance in the proposed method.
We set three different thresholds to detect the minimum dis-
tance moment tmin in the experimental test #1, i.e., to obtain
the start time tfst and end time tend in (31). The three thresholds
have been set to 6000, 8000, and 10000, respectively. Note that
the different SPD thresholds have a significant impact on the
ZUPT algorithm. For a fair comparison, we only analyze the
effect of different thresholds on the proposed MDMD method.
The SPD threshold of the ZUPT algorithm remained the same
in the three schemes. Fig. 18 shows the positioning errors of
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(a) (b)

Fig. 18. Positioning error of the proposed method under three SPD thresholds
in experimental test #1. (a) Left foot. (b) Right foot.

TABLE VI
POSITIONING ERROR STATISTICS OF THE PROPOSED METHOD WITH

THREE DIFFERENT SPD THRESHOLDS (m)

the proposed algorithm with the three SPD threshold settings,
and Table VI summarizes the positioning error statistics with
different walking distances.

The average positioning errors of the proposed method were
approximately 1.26 %, 1.06 %, and 1.25 % for the three SPD
threshold settings, respectively. The maximum difference in
position error among the three schemes was approximately
2.4 m (1100 m walking distance). Considering the normal
numerical fluctuations in the SPD algorithm, we can con-
clude that the proposed MDMD method is almost immune
to the SPD threshold. The experimental test results under
different SPD threshold settings also demonstrate the robust-
ness of the proposed MDC method in the dual-foot pedestrian
system.

VI. CONCLUSION AND FUTURE WORK

This article presents a novel enhanced MDC method for
the dual-foot pedestrian positioning system. The proposed
method achieves superior positioning performance compared
to traditional methods by making more reasonable use of the
distance constraint information. First, an IDC algorithm is
proposed to reduce nonlinear error losses, thus maximizing
the improvement of autonomous positioning performance to
obtain accurate and consistent state estimates under nonlin-
ear MDCs. Second, a more reasonable and stable MDMD is
designed based on a discovered phenomenon (i.e., the mini-
mum distance moment coefficient fluctuates around the con-
stant value of 0.60 in a normal walking scenario). The MDMD
method overcomes the problem related to recursive position
effects on distance constraint moment detection. Two rigor-
ous experimental tests with a long walking trajectory without
turn around and closed loop were conducted to verify the
effectiveness of the proposed method. Experimental results
demonstrated that the positioning performance of the proposed
method was better than 1.5 % (walking distance over 1000 m)

and improved the positioning accuracy by 83.5 % and 62.9 %
compared to the ZUPT method and the classical MDC method,
respectively. Moreover, the experimental analysis further
verifies the reasonability and robustness of the proposed
method.

This article mainly considers the positioning performance
that can be achieved by the dual-foot pedestrian system
improved by the MDC in challenging positioning scenarios
(that is, the user walks on non-straight-line and non-closed-
loop routes). However, some valuable constraint information
can still effectively improve the positioning performance in
ordinary cases, such as straight-line constraints, closed-loop
trajectories, etc. Therefore, we will consider combining the
traditional constraint information with the proposed method
in the next study. The MDC assumption in this article may be
broken in complex walking scenarios (e.g., mountainous envi-
ronments), and the proposed MDMD method is difficult to
adapt to nonhealthy pedestrians (e.g., leg injuries). Therefore,
we will consider using additional sensors to obtain more accu-
rate and stable minimum distance and constraint moments
to improve the stability of pedestrian positioning in practi-
cal applications in our future work. Furthermore, we also plan
deeper investigations into the regular features of pedestrian
motion to improve the capacity and stability of autonomous
pedestrian positioning.
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