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An iterative method for the distance constraints in a
multi-sensor positioning system

Tao Liu, Jian Kuang, and Xiaoji Niu

Abstract—The distance constraint can enhance the state esti-
mation performance of a multi-sensor positioning system. How-
ever, the existing methods encounter problems such as low state
estimation accuracy and high computational complexity. This
study proposes an iterative constraint algorithm that effectively
solves the distance constraint problem in a multi-sensor posi-
tioning system. The proposed algorithm linearizes the distance
constraint in each iteration to obtain an approximate linear
constraint model. Then, it re-estimates the approximate system
state by using the estimation projection algorithm. In the last
iteration, the proposed algorithm uses the approximate state
estimate as input to estimate a more accurate system state until
the iteration is terminated. Three simulations are provided to
demonstrate the effectiveness and superiority of the proposed
algorithm.

Index Terms—Multi-sensor system, distance constraint, state
estimation, iterative estimation.

I. INTRODUCTION

THE growing demand for location-based services warrants
the acquisition of accurate and reliable position infor-

mation. The multi-sensor system has distinct advantages over
the single-sensor system in terms of positioning accuracy and
reliability [1, 2], fault or interference tolerance, and more [3].
The multi-sensor system has the ability to implement the com-
plementary advantages of the different types of sub-sensors.
Moreover, some periodic and objective characteristic signals
in the different nodes of a mobile carrier can further be used
to enhance system positioning performance. In a multi-sensor
system, some inherent constraints are contained among the
sub-sensors arising from the physical platform, mathematical
and physical attributes, and environmental characteristics. For
example, non-holonomic constraints [4] in land-based vehicle
positioning, normalized constraints [5, 6] in quaternion-based
attitude estimation, and joint kinematics constraints [7, 8]
between body segments in pedestrian positioning.

In multi-sensor systems, distance constraint is a typical
inherent constraint. As shown in Fig. 1, three low-cost inertial
sensors are mounted on the left and right wheels and back
of the vehicle or robot in a wheel-based navigation system
[9, 10]. The determinate and constant distance between the
three sensors can improve the inertial-based dead-reckoning
performance. The distance between adjacent joints (e.g., the

Manuscript received July 12, 2022; revised XX XX, 202X; accepted XX
XX, 202X. Date of publication XX XX, 202X. This work was supported by
the National Natural Science Foundation of China under Grant 41904019 and
Grant 41974024. (Corresponding author: Jian Kuang.)

T. Liu, J. Kuang and X. Niu are with the GNSS Research Center, Wuhan
University, Wuhan, Hubei, CO 430072 PR China. X. Niu is also with the Ar-
tificial Intelligence Institute, Wuhan University and the Hubei Luojia Labora-
tory. (E-mails: liu tao@whu.edu.cn; kuang@whu.edu.cn; xjniu@whu.edu.cn).

(a)

Distance constraint
Sensor node

(b)
Fig. 1. Examples of distance constraint in the multi-sensor system. (a) Wheel-
based navigation system. (b) Wearable body sensor network (WBSN).

knee and hip joints) in the human body is constant [8].
The constant distance constraint can be used to enhance the
performance of wearable body sensor networks (WBSN) in
various applications such as motion monitoring [7, 11, 12],
disease treatment and rehabilitation [13, 14], and daily activity
analysis [15]. Therefore, exploiting the potential of distance
constraints to improve the positioning performance of multi-
sensor systems is crucial. In this study, we consider the
implementation of an accurate and consistent state estimation
based on the distance constraints of a multi-sensor positioning
system in the Kalman filter framework.

The classical method of distance constraint in a multi-
sensor system is to use the distance to directly construct
the position correlation between any two sub-sensors. For
example, in WBSN, the distance constraint between feet and
knee is simplified to the height difference, which can be used
to establish the positional relationship between the two [8, 11].
Unfortunately, the distance constraint in this approach does
not help improve state estimation performance. An effective
strategy is to translate the distance constraint into the lever
arm in inertial navigation algorithms [4, 10]. In this case,
the attitude estimate using inertial sensor observations and the
corresponding lever arm are combined to effectively improve
positioning performance. However, this distance constraint
strategy is not universal, as it can only be applied to multi-
sensor systems with inertial sensors.

Furthermore, the distance constraint is nonlinear. Therefore,
the pseudo-observation approach is a classical strategy for ad-
dressing distance constraints [16, 17]. This approach combines
the distance constraints and original measurement equation
to develop an augmented model. Moreover, the optimal state
estimation is implemented using a nonlinear filter. Typical
used nonlinear filters include extended Kalman filter (EKF),
unscented Kalman filter (UKF), cubature Kalman filter (CKF),
and particle filter (PF). EKF transforms the nonlinear model
into a linear model using the first-order Taylor expansion and
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implements recursive updates of the system state and covari-
ance matrix using the KF [16, 18]. UKF employs an unscented
transformation to approximate the posterior probability density
function of a nonlinear model [19–22]. CKF uses a third-
degree spherical–radial cubature rule to approximate the pos-
terior mean and variance of the nonlinear model [23, 24].
Moreover, PF is an optimal recursive Bayesian filter based on
a sequential Monte Carlo simulation [25–27]. In general, the
pseudo-observation methods cannot achieve a balance between
state estimation accuracy and computational complexity. When
using EKF, UKF, and CKF, the state estimation accuracy
of the pseudo-observation methods is significantly limited
owing to the nonlinear property in the distance-constrained
problem. The pseudo-observation approach requires a huge
computational effort to achieve accurate state estimation per-
formance when PF is used. Furthermore, as the number of
sub-sensors increases, more distance constraint information
becomes available, which causes a sharp increase in the
computational burden of the pseudo-observation approach.

The distance constraint can be reduced to a quadratic con-
straint model when a multi-sensor positioning system contains
only two sub-sensors. The constraint model is x⊺Mx = d,
where x is the system state, M is the coefficient matrix, and
d is the distance constraint vector. The quadratic constraint
problem can be considered a conditional extremum problem
of minimum state variance under the quadratic equality con-
straint condition [28, 29], which can be solved using the
Lagrange multiplier technique. Furthermore, singular value
decomposition (SVD) and Cholesky factorization methods can
be used to transform the conditional extremum into a solu-
tion of a polynomial equation, with the Lagrange multiplier
as the only independent variable. The quadratic constraint
method can provide an accurate analytical solution for the
system state vector. However, this method cannot obtain an
analytical solution for the system covariance matrix. Although
some studies have obtained an approximate covariance matrix
[20, 30], inconsistencies still exist between the estimated
covariance matrix and state vector. This inconsistency leads to
the poor numerical stability of the quadratic constraint method.
Furthermore, the quadratic constraint method is only suitable
for positioning systems using only two sub-sensors. Therefore,
it cannot be generalized to a multi-sensor system with multiple
distance constraints (three or more sub-sensors).

To solve the problem of multiple distance constraints in
the multi-sensor positioning system, an iterative distance con-
straint algorithm is proposed in this study. First, an uncon-
strained centralized filter is used to obtain the initial state
estimate and corresponding covariance matrix. Subsequently,
an iterative algorithm is presented to solve the multiple dis-
tance constraints in the multi-sensor system. In each iteration
of the proposed algorithm, the multiple distance constraints are
approximated as a linear constraint optimization problem. The
classical estimation projection method is employed to acquire
an approximate state estimate in a single iteration. Finally,
the optimal estimate is determined from alternative estimates
obtained through continuous iterative updates. Specifically, the
contributions of the study are summarized as follows:
(1) We separated the distance constraint and unconstrained

filter and formulate the distance constraint problem as a
general optimization model. From the algorithm archi-
tecture level, the computational complexity was reduced
and the interference of the number of sub-sensors was
isolated.

(2) We presented an iterative strategy that permits the up-
dated system state to continuously approximate the dis-
tance constraint model. The nonlinear effect of the dis-
tance constraints was weakened such that accurate system
state estimation can be obtained.

(3) We established the estimated state error in each iteration
as a linear function related to the unconstrained state
error, which ensures that the estimated covariance matrix
is consistent with the system state.

The remainder of this paper is organized as follows. The
problem formulation is given in Section II. Section III reviews
the unconstrained filter, pseudo-observation, and quadratic
constraint algorithms. The proposed iterative distance con-
straint algorithm is derived in Section IV. Simulation results
are presented in Section V. Section VI concludes this paper.

II. PROBLEM FORMULATION

Consider a multi-sensor system composed of s sub-sensors,
each of which is indexed by an integer i ∈ {1, 2, · · ·, s}.
The dynamic model of the ith sub-sensor is represented by
a nonlinear discrete-time system as follows:{

xi
k+1 = fi(x

i
k) +wi

k

zik = hi(x
i
k) + vi

k

(1)

where k is the time index, xi
k ∈ Rni is the state vector,

fi(·) is the known state transition function, zik ∈ Rmi is
the measurement vector, hi(·) is the known measurement
function. The process noise wi

k ∈ Rni and measurement noise
vi
k ∈ Rmi are assumed to be zero-mean white Gaussian noise

with covariance matrices Qi
k and Ri

k. Moreover, xi
k, wi

k, and
vi
k are assumed to be uncorrelated to one another. For a linear

discrete-time system, the state transition function fi(·) and
measurement function hi(x

i
k) can be modeled as Fi

kx
i
k and

Hi
kx

i
k, Fi

k ∈ Rni×ni and Hi
k ∈ Rmi×ni are the known state

transition and measurement matrices.
We used a centralized filter to simultaneously estimate the

state of multiple sub-sensors. The multi-sensor dynamical
system can be integrated into a state-space model as follows:{

xk+1 = f(xk) +wk

zk = h(xk) + vk

(2)

where Λk = coa(Λ1
k, · · ·,Λ

p
k), Λ ∈ {x,w, z,v,f(·),h(·)},

and p ∈ {s,m}. For a linear discrete-time system, Γk =
cob(Γ1

k, · · ·,Γ
p
k), and Γ ∈ {F,H}. The details of the vector

Λ and matrix Γ are given as follows:

Λ =

Λ
1

...
Λp

 ; Γ =

Γ
1

. . .
Γp

 (3)

Evidently, the noise wk and vk in the state-space model
(2) still obey the Gaussian noise distribution with zero mean
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vectors and covariance matrices Qk = cob(Q1
k, · · ·,Qs

k) and
Rk=cob(R1

k, · · ·,Rm
k ).

The distance constraint between two sub-sensors in a multi-
sensor system can be written as follows:

di,j =

√
(xi

k−xj
k)

2+(yik−yjk)
2+(zik−zjk)

2 (4)

where i represent the ith sub-sensor system, k is the time
index, (x, y, z) is the three-dimensional (3D) position, di,j is
the known distance constraint, and di,j ≥ 0. The distance
constraint model can be further written as follows:

ζi,j(xk) = d2i,j (5)

ζi,j(xk) =
(
Dix

i
k −Djx

j
k

)⊺ (
Dix

i
k −Djx

j
k

)
(6)

where Di is a matrix to extract the position from the ith
sub-sensor state. If the system state of each sub-sensor is
established by position and velocity, the matrix D can be
expressed as follows:

Di = Dj =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (7)

Without loss of generality, the multiple distance constraints
in a multi-sensor system only exist between two adjacent sub-
sensors. Thus, the distance constraint model of the multi-
sensor system is written as follows:

ζ(xk) = d (8)

d ≜
[
d21,2, · · · , d2s−1,s, d2s,1

]⊺
(9)

ζ(xk) ≜ [ζ1,2(xk), · · · , ζs−1,s(xk), ζs,1(xk)]
⊺ (10)

III. CLASSICAL DISTANCE CONSTRAINT METHODS

In this section, we review the standard unconstrained filter
methods, and subsequently introduce the pseudo-observation
and quadratic constraint algorithms.

A. Unconstrained filters

We first summarized the state estimation without consid-
ering the distance constraint in the KF framework for the
multi-sensor system (2). The standard KF can achieve optimal
state estimation in a linear Gaussian system [17, 31]. Under
the known initial state x̂0 =E[x0] and its covariance matrix
P0=E[(x0−̂x0)(x0−̂x0)

⊺], KF can recursively estimate the state
vector and covariance matrix through the following process.

Prediction:{
x̂k|k−1 = Fk−1x̂k−1

Pk|k−1 = Fk−1Pk−1F
⊺
k−1 +Qk−1

(11)

Update:
Kk = Pk|k−1H

⊺
k

(
HkPk|k−1H

⊺
k +Rk

)−1
x̂k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)
Pk = Pk|k−1 −KkHkPk|k−1

(12)

where x̂k and Pk are the state estimate and corresponding
covariance matrix at time k, respectively; x̂k|k−1 and Pk|k−1

are the predicted state and corresponding covariance matrix,
respectively; and Kk is the gain matrix.

For a nonlinear Gaussian system, EKF, UKF, CKF, and PF
are the classical filters. For nonlinear Gaussian systems in most
positioning applications (e.g., wireless positioning and inertial
integrated navigation), UKF has almost the same state estima-
tion accuracy and algorithmic complexity as CKF. Compared
to EKF, UKF has a significant advantage in state estimation
accuracy. Furthermore, UKF can achieve approximately the
same state estimation accuracy as the PF and has a significant
computational advantage [22, 32]. Therefore, UKF was chosen
to solve the nonlinear estimation problem for the multi-sensor
system (2). UKF procedure is given as follows:

Prediction:
χk−1 =

{
x̂k−1, x̂k−1±(

√
(n+ λ)Pk−1)j

}
ξk|k−1 = f(χk−1); x̂k|k−1 =

∑2n
i=0 W

m
i ξik|k−1

Pk|k−1 =
∑2n

i=0W
c
i (χ

i
k|k−1−x̂k|k−1)(⋄)⊺ +Qk−1

(13)

Update:

γk|k−1 = h(χk−1); ẑk|k−1 =
∑2n

i=0 W
m
i γi

k|k−1
Pzz

k =
∑2n

i=0W
c
i (γ

i
k|k−1−ẑk|k−1)(⋄)⊺ +Rk

Pxz
k =

∑2n
i=0 W

c
i (χ

i
k|k−1−x̂k|k−1)(γ

i
k|k−1−ẑk|k−1)

⊺

Kk = Pxz
k (Pzz

k )
−1

x̂k = x̂k|k−1 +Kk

(
zk − ẑk|k−1

)
Pk = Pk|k−1 −KkPzz,kK

⊺
k

(14)

where χk−1 is the sigma points; ξk|k−1 and γk|k−1 are the
updated sample points related to the system state and measure-
ment, respectively; x̂k|k−1 and Pzz

k are the predicted state and
corresponding covariance matrix, respectively; ẑk|k−1 and Pzz

k

are the predicted measurement and corresponding covariance
matrix, respectively; Pxz

k is the covariance matrix between the
state and measurement; Kk is the filter gain matrix; x̂k and
Pk are the state estimate and corresponding covariance matrix,
respectively; λ is a scaling parameter; Wm

i and W c
i are the

weight coefficients; (A)j represents A(1 :n, j), j=1,· · ·, n;
and (A)(⋄)⊺ stands for (A)(A)⊺.

B. Pseudo-observation method

The pseudo-observation method aims to combine the dis-
tance constraint model (8) with the original measurement
equation to form an augmented model [22, 28, 32]. Then,
the distance constraint in the multi-sensor system (2) can
be converted into a common nonlinear filter problem. The
augmented measurement model is given as follows:

z̃k = h̃(xk) + ṽk (15)

z̃k ≜

[
zk
d

]
; h̃(xk) ≜

[
h(xk)
ζ(xk)

]
; ṽk ≜

[
vk

0s×1

]
(16)

where the noise ṽk still is a zero-mean white Gaussian noise,
and the corresponding covariance matrix R̃k=cob{Rk,0s×s}.

After the augmented measurement model is constructed,
the nonlinear filter algorithm can implement the problem
of distance constraint in the multi-sensor system. UKF can
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handle this problem owing to its accuracy and computational
complexity advantages.

However, the pseudo-observation algorithm has some short-
comings. As the number of sub-sensors increases, more dis-
tance constraint information becomes available, resulting in
a sharp increase in the computational requirements of the
pseudo-observation approach. UKF has a limited improvement
in state estimation accuracy under distance constraints, while
the higher accuracy nonlinear filter (e.g., PF) requires more
complex algorithms and enormous computational effort.

C. Quadratic constraint algorithm

If the system (2) contains two sub-sensors, the distance
constraint model (8) can be reduced as follows:

x⊺
kMxk − d21,2 = 0 (17)

xk=
[
(x1

k)
⊺ (x2

k)
⊺
]
, M=

[
D1 −D2

]⊺[
D1 −D2

]
(18)

The state estimation of the distance constraint can be
formulated as the following optimization problem:

x̆k = argmin
x̃k

(x̃k − x̂k)
⊺Wk(x̃k − x̂k) (19)

s.t. x̃⊺
kMx̃k − d21,2 = 0 (20)

where x̆k is the constrained estimate, x̂k is the state estimate
of the unconstrained filter, and Wk = P−1

k is a weighting
matrix. By using the Lagrange technique [28], we obtained
the following state estimate with the distance constraint:

x̃k = (Wk + λM)−1(Wkx̂k) (21)

where Wk is a real symmetric positive definite matrix, which
can be decomposed by the Cholesky decomposition as Wk=
G⊺G. Moreover, the singular value decomposition (SVD) is
used to decompose the matrix LG−1 as follows:

LG−1 = UΣV⊺ (22)

where L =
[
D1 −D2

]
; U and V are unitary matrices,

UU⊺ = I, VV⊺ = I, and I is identity matrix; Σ stands for
diag{σ1,· · ·, σm}. Thus, the state x̃k can be written as follows:

x̃k = (G⊺G+ λL⊺L)−1(Wkx̂k)

= G−1V (I+ λΣ⊺Σ)
−1

(V⊺G−⊺Wkx̂k)
(23)

Define ex̂=V⊺G−⊺Wkx̂k={e1,· · ·, en}, we have

x̃⊺
kMx̃k = e⊺x̂ (I+λΣ⊺Σ)

−⊺
(Σ⊺Σ)(I+λΣ⊺Σ)

−1
ex̂

=

m∑
i=1

σ2
i e

2
i

(1 + λσ2
i )

2

(24)

By substituting (24) into (17), we have:
m∑
i=1

σ2
i e

2
i

(1 + λσ2
i )

2 − d21,2 = 0 (25)

where m=3 for 3D positioning application.
Therefore, the distance constraint problem in the multi-

sensor system with two sub-sensors is transformed into the
solution of λ. We solved the analytical solution of the de-
rived equation with one unknown variable λ, to obtain an
accurate root. We can derive a maximum of six roots for the

3D positioning scenario. The optimal Lagrangian multiplier
λ∗ satisfies the solution with the minimum cost function
(x̃k−x̂k)

⊺Wk(x̃k−x̂k) among all real roots. Therefore, the
constrained state estimate x̆k can be derived as follows:

x̆k = (Wk + λ∗M)−1(Wkx̂k) (26)

D. Covariance matrix update in quadratic constraint method

Covariance matrix estimation has the same priority as state
estimation in practical applications. The constrained covari-
ance matrix can be approximated as follows[20, 30]:

P̆k ≈ ∆pPk(∆p)⊺ (27)

where ∆p is the Jacobi matrix of the projection function p(x)
with respect to x around x̂k, and is defined as follows:

p(x) = (Wk+λ∗M)−1(Wkx) = Λ(λ∗)x (28)

∆p =
∂p(x)

∂x

∣∣∣
x=̂xk

(29)

Define Λ=Λ(λ∗). Because ∂x
∂x |x=̂xk

=I, we have

∆p =
∂Λ

∂λ∗
∂λ∗

∂x
x
∣∣∣
x=x̂k

+Λ(λ∗) (30)

Define Π(λ∗)=(Wk+λ∗M)−1, we obtain

∂Λ

∂λ∗ =
∂(Wk+λ∗M)−1

∂λ∗ Wk = −Π(λ∗)MΛ(λ∗) (31)

The optimal Lagrangian multiplier λ∗ can be represented as
the root of the nonlinear implicit function as follows:

λ∗ 7→
{
λ ∈ R

∣∣∣f (Λ(λ), x̂k) = 0
}

(32)

f (Λ(λ), x̂k) = (Λ(λ)x̂k)
⊺
MΛ(λ)x̂k − d21,2 (33)

According to the Dini classical implicit function theorem
[33], we derive the derivative of the function λ∗ with respect
to x around x̂k as follows:

∂λ∗

∂x

∣∣∣
x=̂xk

= −
(
∂f

∂λ

∣∣∣
λ=λ∗

)−1 (
∂f

∂x

∣∣∣
x=̂xk

)
(34)

where
∂f

∂λ

∣∣∣
λ=λ∗

= x̂⊺
k

(
∂Λ(λ)

⊺

∂λ

∣∣∣
λ=λ∗

)
MΛ(λ∗)x̂k

+ x̂⊺
kΛ(λ∗)

⊺
M

(
∂Λ(λ)

∂λ

∣∣∣
λ=λ∗

)
x̂k (35)

= −2p⊺(x̂k)MΠ(λ∗)Mp(x̂k)

∂f

∂x

∣∣∣
x=̂xk

= 2x̂⊺
kΛ

⊺(λ∗)MΛ(λ∗)=2p⊺(x̂k)MΛ(λ∗) (36)

By substituting (35) and (36) into (34), we obtain

∂λ∗

∂x

∣∣∣
x=̂xk

=
p⊺(x̂k)MΛ(λ∗)

p⊺(x̂k)MΠ(λ∗)Mp(x̂k)
(37)

By substituting (31) and (37) into (30), we obtain

∆p =

(
I− Π(λ∗)Mp(x̂k)p

⊺(x̂k)M

p⊺(x̂k)MΠ(λ∗)Mp(x̂k)

)
Λ(λ∗) (38)

The constrained covariance matrix can be obtained by
substituting (38) into (27). Notably, the anomaly ∆p ≥ I
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may occur during algorithm implementation because of the
instability of numerical calculation, resulting in P̆k≥Pk.

The quadratic constraint algorithm can implement optimal
state estimation for the distance constraint problem. However,
this approach has poor numerical stability because the con-
strained state estimate and covariance matrix are inconsistent
(one is exact and the other is approximate). Furthermore, the
approach is only suitable for the distance constraint in two
sub-sensors. It cannot be generalized to a multi-sensor system
with multiple distance constraints (three or more sub-sensors).

IV. PROPOSED DISTANCE CONSTRAINT METHOD

In this section, we propose an iterative algorithm for solv-
ing multiple distance constraint optimization problems in the
multi-sensor system (2). The distance constraint between the
two sub-sensors is rewritten as follows:

gi,j(xk) = (Dix
i
k−Djx

j
k)

⊺(Dix
i
k−Djx

j
k)− d2i,j = 0 (39)

We suppose that the optimized state xk contains an approxi-
mate estimate x̃k. In that case, the distance constraint function
gi,j(xk) can be expanded by the Taylor series expansion
around the approximate estimate x̃k as follows:

gi,j(xk) ≈gi,j(x̃k) + 2(Dix̃
i
k−Djx̃

j
k)

⊺Di(x
i
k−x̃i

k)

− 2(Dix̃
i
k−Djx̃

j
k)

⊺Dj(x
j
k−x̃j

k) = 0
(40)

The matrix form of Eq. (40) is given as follows:[
S1
i,j S2

i,j

] [
(xi

k)
⊺ (xj

k)
⊺
]⊺

= bi,j (41)
S1
i,j = 2(Dix̃

i
k −Djx̃

j
k)

⊺Di

S2
i,j = −2(Dix̃

i
k −Djx̃

j
k)

⊺Dj

bi,j = S1
i,jx̃

i
k + S2

i,jx̃
j
k − gi,j(x̃k)

(42)

Therefore, under the known premise of approximate state
estimation, the state estimation of the distance constraints opti-
mization problem in the multi-sensor system can be formulated
as the following optimization problem:

x̆∗
k = argmin

xk

(xk − x̂k)
⊺Wk(xk − x̂k) (43)

s.t. Axk − b = 0 (44)

where x̆∗
k is the constrained state estimate in the presence of

an approximate estimated value x̃k, and

A=


S1
1,2 S2

1,2

. . . . . .
S1
s−1,s S2

s−1,s
S2
s,1 · · · S1

s,1

 , b=


b1,2

...
bs−1,s
bs,1

 (45)

By following the basic idea of the estimation projection
method [34], we projected the unconstrained state estimate
onto the distance-constrained surface [28]. With the Lagrange
multiplier technique [17, 34], we solved the optimization
problem (43, 44) by minimizing the Lagrangian function:

L(xk,λ)=(xk−x̂k)
⊺Wk(xk−x̂k) + 2λ⊺(Axk−b) (46)

where λ is a Lagrangian multiplier vector.
The minimum of the Lagrangian function (46) was cal-

culated by differentiating L(xk,λ) with respect to one of

the variables while keeping the other constant. Then, the
calculated expressions were set to zero. Therefore,{

∂L(xk,λ)
∂λ = Axk−b = 0

∂L(xk,λ)
∂xk

= 2Wk(xk−x̂k) + 2A⊺λ = 0
(47)

We obtain λ= (AW−1
k A⊺)−1 (Ax̂k−b), and substitute it

into (47) to derive

x̆∗
k = x̂k −W−1

k A⊺
(
AW−1

k A⊺
)−1

(Ax̂k−b) (48)

We can reasonably infer from (40-48) that the estimated
constrained state x̆∗

k in the distance constraint problem will be
more accurate if the approximate state estimate x̃k is closer
to the true state xk. We assumed that both the constrained
state estimate x̆∗

k and the approximate state estimate x̃k

revolve around the true state xk. Based on this assumption,
we used the last constrained state estimate to replace the
approximate state estimate and deduced a series of alternative
state estimates through continuous iteration updates. Finally,
the most probable state estimate was determined to be the
final constrained state estimate x̆k among these alternative
state estimates. The iterative constrained state estimate can
be written as follows:

x̆∗
k,l+1 = x̂k −W−1

k A⊺
l

(
AlW

−1
k A⊺

l

)−1
(Alx̂k−bl) (49)

where matrix Al and vector bl are related to the constrained
state estimate x̆∗

k,l in the lth iteration, which are obtained using
(45) and replacing x̃k in (42) with x̆∗

k,l, that is,

Al=


S1,l
1,2 S2,l

1,2

. . . . . .
S1,l
s−1,s S2,l

s−1,s
S2,l
s,1 · · · S1,l

s,1

 , bl=


bl1,2

...
bls−1,s
bls,1

 (50)


S1,l
i,j = 2(Dix̆

i,∗
k,l −Djx̆

j,∗
k,l)

⊺Di

S2,l
i,j = −2(Dix̆

i,∗
k,l −Djx̆

j,∗
k,l)

⊺Dj

bli,j = S1,l
i,j x̆

i,∗
k,l + S2,l

i,j x̆
j,∗
k,l − gi,j(x̆

∗
k,l)

(51)

In each iteration update, we have

xk − x̆∗
k,l+1

=xk−x̂k+W−1
k A⊺

l

(
AlW

−1
k A⊺

l

)−1
(Alx̂k−bl)

=xk−x̂k+W−1
k A⊺

l

(
AlW

−1
k A⊺

l

)−1
(Alx̂k−Alxk)

=
[
I−W−1

k A⊺
l

(
AlW

−1
k A⊺

l

)−1
Al

]
(xk−x̂k)

(52)

We define Jl =W−1
k A⊺

l

(
AlW

−1
k A⊺

l

)−1
Al, and thus calcu-

late the constrained state covariance matrix as follows:

P̆k,l+1 = E
[(
xk − x̆∗

k,l+1

) (
xk − x̆∗

k,l+1

)⊺]
= E [(I− Jl) (xk−x̂k) (xk−x̂k)

⊺
(I− Jl)

⊺
]

= (I− Jl)Pk(I− Jl)
⊺

(53)

Notably, the estimated covariance matrix in each iteration
is smaller than the covariance matrix provided by the uncon-
strained KF, that is, P̆k,l < Pk. The initial condition of the
iterative process (49) was set to the state estimate x̃k provided
by the unconstrained filter in Section III. A. The number of
iterations of the proposed algorithm was a preset constant.
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We obtained a series of alternative state estimates x̆∗
k,l

and corresponding covariance matrices through continuous
iteration updates. The determination criterion for the final
constrained state estimate x̆k is given as follows:

x̆k = argmin
x̆∗
k,l

(x̆∗
k,l − x̂k)

⊺Wk(x̆
∗
k,l − x̂k) (54)

We can conclude from (49) and (53) that the constrained
state estimate x̆∗

k,l and the corresponding covariance matrix
P̆k,l are consistent in each iteration update process. The
detailed implementation of one time step of the proposed
algorithm for the distance constraint optimization is given in
Algorithm 1.

Particularly, the proposed algorithm assumes that the state
estimate generated by an unconstrained filter is close to
the true state vector. If the unconstrained filter converges,
the approximate system state estimate x̂k and corresponding
weight matrix Wk can be obtained; hence, the assumption
of the proposed algorithm is generally satisfied. Fortunately,
in the practical application of multi-sensor positioning, the
unconstrained filter is usually convergent rather than divergent,
otherwise unconstrained filter is considered to be an abnormal
working state.

Algorithm 1 One time step of the proposed algorithm for
distance constraint optimization in a multi-sensor system
input: unconstrained filter estimate by Section III.A: x̂k, Pk; the

distance constraint vector d; and the maximum iterations lm.
output: constrained state estimate and covariance matrix: x̆k, P̆k

1: set: x̆∗
k,0= x̂k, Wk=P−1

k , l=1.
2: while l ≤ lm do
3: calculate Al and bl by x̆∗

k,l and (50, 51).
4: calculate the iterative constrained state estimate x̆∗

k,l+1 by (49).
5: update l = l+1.
6: end while
7: obtain x̆k by (54), and P̆k=(I−Jl)Pk(I−Jl)

⊺ by (53).

We define the computational complexity O as the number
of basic mathematical operations (i.e., addition, subtraction,
multiplication, and division). We used the most straightforward
matrix multiplication and classic Gauss-Jordan elimination
methods [35] to analyze the computational complexity of the
algorithm. For an n×m matrix A, an m×p matrix B, and
an n×n matrix C, we can obtain O(AB)=n(2m−1)p and
O(C−1)=n3 using the classic Gauss-Jordan elimination.

We assume that the system state of each sub-sensor only
contains the position and velocity vectors, and that its dimen-
sion is n. Therefore, the transfer matrix D of each sub-sensor
is the same, with the dimension of 0.5n×n. Then, we derive
the computational complexity of the updated variables in the
iterative process as follows:

O(S1,l
i,j )=O(S2,l

i,j )=3n
2+n, O(bli,j)=n

3+2n2+7n−1 (55)

Hence,

O(Al)=2s(3n2+n), O(bl)=s(n3+2n2+7n−1) (56)

After updating Al and bl, we define C1 = A⊺
l , C2 =

W−1
k C1, C3=AlC2, C4 =C−1

3 , C5=Alx̂k−bl, O(C6)=
O(C4C5), and O(C7)=O(C2C6). Thus, we derive

O(C1)=s(sn); O(C2)=(sn)(2sn−1)(s)

O(C3)=s2(2sn−1); O(C4)=s3

O(C5)=2s(sn); O(C6)=s(2s−1)

O(C7)=sn(2s−1)

(57)

Therefore, the computational complexity of the proposed
iterative algorithm in one iteration in Eq. (49) is as follows:

O(x̆∗
k,l) = O(Al)+O(bl)+O(C1)+O(C2)+O(C3)

+O(C4)+O(C5)+O(C6)+O(C7)+(sn)

= (2n2+2n+1)s3+(4n+1)s2−s

(58)

We have

O(J)=2(n2+n)s3−(n2+n)s; O(I−J)=(sn)2 (59)

Because O((I−J)⊺)=O(I−J), the computational complexity
of the constrained covariance matrix (53) is given as follows:

O(P̆)=O(J)+O(I−J)+O((I−J)⊺)+2(sn)2(2sn−1)

=(4n3+2n2+2n)s3−(n2+n)s
(60)

By setting the number of iterations l to a constant value, we
express the computational complexity of the proposed iterative
constraint algorithm as follows:

OProposed = l×O(x̆∗
k,l) +O(P̆) (61)

For the unconstrained KF, we assume that the matrices Fk∈
Rsn×sn, Qk ∈Rsn×sn, Hk ∈Rsm×sn and Rk ∈Rsm×sm in
Eqs. (11, 12) are deterministic and time-invariant. Hence,

O(x̂k|k−1)=sn(2sn−1)

O(Pk|k−1)=4(sn)3−(sn)2

O(Kk)=sn(2sn−1)sm+2sn(sm)2+(sm)3

O(x̂k)=4(sn)(sm)

O(Pk)=(sn)2(2sm+2sn−1)

(62)

Therefore, the computational complexity of the uncon-
strained KF algorithm is expressed as follows:

OKF=O(̂xk|k−1)+O(Pk|k−1)+O(Kk)+O(̂xk)+O(Pk)

=6(sn)3+4(sm)(sn)2+(2sm+3m−1)s+(sm)3
(63)

We assume that the system state of each sub-sensor is the
same, containing only position and velocity, and position as
the system measurement vector. Thus, n = 4 and m = 2
for 2D positioning applications, and n = 6 and m = 3 for
3D applications. Figure 2 shows the ratio of the computa-
tional complexity between the proposed iterative constraint
algorithm (61) and unconstrained KF (61). After performing
the unconstrained filter by Section III. A, the computational
complexity of the proposed algorithm is comparable to that
of the unconstrained KF. Even for a multi-sensor system with
ten sub-sensors, the computational complexity ratio between
the proposed algorithm and KF does not exceed 1.6 in 2D
localization applications.

Note that the complexity of the proposed algorithm does not
strictly correspond to the actual run time. The algorithm should
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Fig. 2. Computational complexity ratio between the proposed algorithm (61)
and KF (63) in 2D positioning applications, l is the number of iterations.

construct and update matrix Al and vector bl based on the last
iterative state estimate, and perform the iteration termination
discriminant function, which will consume a longer run time
than the computational complexity. Furthermore, the storage
space and run time required to update Al and bl with the
number of sub-sensors may be multiples rather than a linear
relationship in the multi-sensor system.

V. NUMERICAL SIMULATION

A. Simulation Setup

To verify the effectiveness of the proposed algorithm and
demonstrate its performance, we simulated various experi-
mental tests for 2D positioning applications. The state vector
of each subsystem in the multi-sensor system is constructed
by 2D position (xi

k, y
i
k) and velocity (vix,k, v

i
y,k), that is,

xi
k = [xi

k yik vix,k viy,k]
⊺, i∈ {1,· · ·, s}. The state transition

matrix Fi
k and process noise matrix Qi

k of each subsystem
[36] are given as follows:

Fi
k=


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

; Qi
k=qi


T 3

3 0 T 2

2 0

0 T 3

3 0 T 2

2
T 2

2 0 T 0

0 T 2

2 0 T

 (64)

where T =1 s is the sampling interval, and qi is power spectral
density (PSD) of the process noise wi

k.
We described linear and nonlinear measurement problems

in three scenarios. The positioning performance of two and
multiple sub-sensors was also considered. Scenario 1 is used to
demonstrate the effectiveness and superiority of the proposed
algorithm compared to other methods in terms of improving
state estimation performance. Scenario 2 aims to verify the
general applicability of the proposed algorithm in multi-sensor
positioning systems with multiple sub-sensors. Additionally,
Scenario 3 is used to demonstrate the effectiveness of the
proposed algorithm for nonlinear positioning systems.

Using KF and UKF, the proposed constraint algorithm
performed state estimation without considering distance con-
straints for the linear and nonlinear measurement problems,
respectively. The proposed algorithm was compared with the
following methods for the linear measurement system: 1)

unconstrained KF in Sec. III. A; 2) UKF-based pseudo-
observation method in Sec. III. B (UPSE); 3) quadratic con-
straint algorithm in Sec. III. C and D (QUAD). In addition, we
compared the performance of the following four algorithms
in nonlinear measurement simulations: 1) the unconstrained
UKF in Sec. III. A; 2) UPSE; 3) the proposed algorithm. All
methods were programmed on MATLAB 2020b and executed
on a computer with AMD Ryzen 7 4800H CPU @2.90 GHz
and 16GB memory.

The cumulative distribution function (CDF) of the posi-
tioning error, the root mean squared error (RMSE), and the
averaged RMSE (ARMSE) were selected as the metrics to
evaluate the positioning performance. Moreover, the run time
was also an indicator to evaluate the operating efficiency (or
complexity) of the different algorithms. The positioning error
ε, RMSE, and ARMSE are defined as follows:

εsk ≜
√

(p̂s
x,k−ps

x,k)
2 + (p̂s

y,k−ps
y,k)

2

RMSEk ≜
√

1
n

∑n
s=1 (ε

s
k)

2

ARMSE ≜
√

1
m×n

∑m
k=1

∑n
s=1 (ε

s
k)

2

(65)

where (p̂s
x,k, p̂

s
y,k) and (ps

x,k,p
s
y,k) are the estimated and

true states (i.e., position or velocity) at sth Monte Carlo run
and time index k, n = 1000 is the number of Monte Carlo
simulations, and m is the total number of time epochs.

B. Scenario 1

In this simulation, we consider a multi-sensor positioning
problem for a land vehicle. Two sensors were mounted on top
of the vehicle, and their positions were measured using global
positioning system techniques. The true movement trajectories
of the two sensors are shown in Fig. 3. The vehicle maintained
a constant velocity motion, and ∥(vix,k, viy,k)∥= 5 m/s. Fur-
thermore, the distance between the two sensors was constant
as the vehicle moved and is given by

d1,2 = 10m (66)

The measurement matrices of the two sensors are given by

H1
k = H2

k = [I2 02] (67)

where I2 and 02 are the identity and zero matrices with 2× 2
dimension, respectively. The noise covariance matrices were
set to R1

k=R2
k=σ2I2, and σ=5 m. The system process noise

PSDs of the two sensors are set as q1 = q2 = 1 m2/s3. The
initial state x̂i

0 and covariance matrix Pi
0 were set as follows:

x̂1
0=


0
0
0
0

; x̂2
0=


0
10
0
0

; P1
0=P2

0=


52 0 0 0
0 52 0 0
0 0 52 0
0 0 0 52

 (68)

Figures 4 and 5 depict the CDF of the positioning error
and RMSE of the position estimate using different algorithms
through 1000 Monte Carlo simulations in Scenario 1, re-
spectively. Table I summarizes the ARMSE of the position
estimate, and run time of the four algorithms in 1000 Monte
Carlo simulations. In addition, the system state uncertainty of
the sub-sensor 1 in one simulation is shown in Fig. 6.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3319636

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on September 29,2023 at 01:15:08 UTC from IEEE Xplore.  Restrictions apply. 



8

0 100 200 300 400 500 600 700
East (m)

0

100

200

300

400
N

or
th

 (m
)

Sub-sensor 1
Sub-sensor 2

Start point (0, 0) m & (0, 10) m

End point (0, 400) m & (0, 410) m

Fig. 3. True movement trajectory in multi-sensor positioning scenario 1.
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Fig. 4. CDF of positioning error through 1000 simulations in Scenario 1.

We can conclude from Figs. 4 and 5 that the distance
constraint information significantly improves the positioning
performance of unconstrained filters. The positioning accuracy
of the proposed algorithm is significantly close to that of
the QUAD method. As summarized in Tab. I, the average
ARMSEs of the UPSE, QUAD, and the proposed algorithms
were reduced by 11.2%, 17.5%, and 17.3%, respectively,
compared to KF. The positioning accuracy difference between
the proposed algorithm and QUAD was approximately 0.2%.
In particular, the proposed algorithm has a significant runtime
advantage over other distance constraint methods. Compared
with UPSE and QUAD methods, the running time of the
proposed algorithm for running 1000 Monte Carlo simulations
is reduced by 43% and 60%, respectively.

TABLE I
ARMSE AND RUN TIME OF DIFFERENT METHODS IN SCENARIO 1.

ARMSE of position (m) KF UPSE QUAD Proposed

Sub-sensor 1
Sub-sensor 2

Average

4.394
4.397
4.396

3.903
3.902
3.903

3.626
3.628
3.627

3.635
3.636
3.636

Run time (s) 3.433 49.731 71.037 28.290

As mentioned in the previous sections, covariance matrix
estimation has the same priority as state estimation in practical
applications. Fig. 6 shows the state uncertainty of sensor 1. The
state uncertainty is defined as the square root of the diagonal of
the covariance matrix. It can be seen that the state uncertainty
obtained by the QUAD has some outliers because the state
and covariance estimation are inconsistent. The abnormal
phenomenon of the covariance matrix estimation does not
occur in the proposed algorithm.

The probability density function (PDF) of the proposed
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Fig. 5. RMSE of position estimate through 1000 simulations in Scenario 1.
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Fig. 6. State uncertainty of the sub-sensor 1 (1st simulation) in Scenario 1.

algorithm for different iteration numbers is shown in Fig.
7. Also, the RMSE of the position state using the proposed
algorithm at different iterations is given in Fig. 7. It can be
seen that the number of iterations of the proposed algorithm
in single-epoch state estimation is distributed in the range of
1−4, accounting for more than 95%. In addition, the RMSE
statistics of the estimated position state were very close when
the iteration numbers were greater than or equal to 3.

The simulation results in positioning scenario 1 verify the
effectiveness of the proposed algorithm and also demonstrate
its advantages in terms of positioning performance, covariance
matrix estimation, and running time, compared to the KF,
UPSE, and QUAD methods.
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Fig. 7. Analysis of the proposed algorithm. (a) PDF of different iteration
numbers. (b) RMSE statistics of the position estimate for different iterations.

C. Scenario 2

In this simulation, we consider a multi-sensor positioning
problem for a land vehicle with four sensors. Since the QUAD
method cannot be extended to the multi-sensor positioning
system with three or more sub-sensors, this simulation only
compares the proposed algorithm with KF and UPSE methods.
four sensors are mounted on a vehicle and their positions
are measured using global positioning system techniques. As
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shown in Fig. 8, the distances between the four sensors are
constant as the vehicle moves and are given by

d1,2=6m; d2,3=4m; d3,4=6m; d4,1=4m (69)

The vehicle maintains a constant velocity motion, and
∥(vix,k, viy,k)∥=5 m/s. The measurement matrices of the four
sensors are given by

H1
k = H2

k = H3
k = H4

k = [I2 02] (70)

where the noise covariance matrices are set as R1
k = R2

k =
R3

k = R4
k = σ2I2, and σ = 5m. The system process noise

PSDs of the four sub-sensors are set as q1 = q2 = q3 = q4 =
1m2/s3. The initial state x̂i

0 and covariance matrix Pi
0 are set

as follows:

x̂1
0=[6 2 0 0]

⊺
; x̂2

0=[0 2 0 0]
⊺

x̂3
0=[0 −2 0 0]

⊺
; x̂4

0=[6 −2 0 0]
⊺

P1
0=P2

0=P3
0=P4

0=


52 0 0 0

0 52 0 0

0 0 52 0

0 0 0 52


(71)

Figures 9 and 10 show the RMSE of the position estimate
and the velocity estimate using different algorithms, respec-
tively. Table II summarizes the ARMSE of the position and
velocity estimate, and run time of the different algorithms in
1000 Monte Carlo simulations.
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Fig. 8. True movement trajectory in multi-sensor positioning scenario 2.

TABLE II
ARMSE AND RUN TIME OF DIFFERENT METHODS IN SCENARIO 2.

Sub-sensor KF UPSE Proposed

ARMSE of
position (m)

1
2
3
4

Average

4.404
4.399
4.398
4.413
4.404

3.338
3.371
3.374
3.336
3.355

3.001
3.019
3.017
3.011
3.012

ARMSE of
velocity (m/s)

1
2
3
4

Average

1.263
1.261
1.261
1.264
1.262

0.935
0.931
0.933
0.932
0.933

0.796
0.804
0.802
0.795
0.799

Run time (s) 4.971 133.457 55.197

As the distance constraint information increases in the
multi-sensor system, the state estimation accuracy of the
distance constraint algorithms also increases. Clearly, the pro-
posed algorithm has higher accuracy in position and velocity
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Fig. 9. RMSE of position estimate through 1000 simulations in Scenario 2.
(a) Sub-sensor 1. (b) Sub-sensor 2. (c) Sub-sensor 3. (d) Sub-sensor 4.

0 50 100 150 200 250 300 350
Time (s)

0.0

0.5

1.0

1.5

2.0

R
M

SE
 o

f v
el

oc
ity

 (m
/s

)

(c)

0 50 100 150 200 250 300 350
Time (s)

(d)

0.0

0.5

1.0

1.5

2.0

0 50 100 150 200 250 300 350
Time (s)

0.0

0.5

1.0

1.5

2.0

R
M

SE
 o

f v
el

oc
ity

 (m
/s

)

(a)

0 50 100 150 200 250 300 350
Time (s)

(b)

0.0

0.5

1.0

1.5

2.0
KF
UPSE
Proposed

Fig. 10. RMSE of velocity estimate through 1000 simulations in Scenario 2.
(a) Sub-sensor 1. (b) Sub-sensor 2. (c) Sub-sensor 3. (d) Sub-sensor 4.

estimation than KF and UPSE. The proposed algorithm re-
duces the average ARMSE in the position estimate by 31.6 %
and 10.2%, respectively; and the average ARMSE in the
velocity estimate by 36.7 % and 14.4%, respectively. Fur-
thermore, the proposed algorithm has a significant operational
efficiency advantage over the UPSE method. The run time of
the proposed algorithm was reduced by 58.6 % compared to
the UPSE method.

The effectiveness of the proposed algorithm and its advan-
tages in terms of positioning performance and run time are
further verified in Scenario 2.

D. Scenario 3

In this simulation, we consider a multi-sensor positioning
problem for a mobile robot with four sensors. As shown
in Figure 11, the four sensors are mounted on the mobile
robot. Furthermore, the distance between the sensor and base
station is measured by wireless positioning technology. The
positions of the three base stations are (0, 0)m, (40, 0)m and
(20, 40)m. Fig. 12 illustrates the measured distance between
the four sub-sensors and the three base stations. The distance
constraints between the four sensors are given by

d1,2=1m; d2,3=1.5m; d3,4=1m; d4,1=1.5m (72)
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Fig. 11. True movement trajectory in multi-sensor positioning scenario 3.

The measurement model of each sub-sensor is non-linear
rather than linear. The QUAD method cannot be extended to
the multi-sensor positioning system with three or more sub-
sensors. Therefore, the unconstrained UKF and UPSE are used
as comparison methods to evaluate the proposed algorithm.
The measurement function of each sensor is given as follows:

hi(x
i
k) =


√
(xi

k − r1x,k)
2 + (yik − r1y,k)

2√
(xi

k − r2x,k)
2 + (yik − r2y,k)

2√
(xi

k − r3x,k)
2 + (yik − r3y,k)

2

 (73)

where rmk is the position of the mth base station, and i ∈
{1, 2, 3, 4} represents the ith sub-sensor. The noise covariance
matrices are set as R1

k = R2
k = R3

k = R4
k = σ2I2, and σ =

0.5 m. The system process noise PSDs of the four sub-sensors
are set as q1 = q2 = q3 = q4 =0.1m2/s3. The initial state x̂i

0

and covariance matrix Pi
0 are set as follows:

x̂1
0=[1.5 1.0 0 0]

⊺
; x̂2

0=[2.5 1.0 0 0]
⊺

x̂3
0=[2.5 2.5 0 0]

⊺
; x̂4

0=[1.5 2.5 0 0]
⊺

P1
0=P2

0=P3
0=P4

0=


12 0 0 0

0 12 0 0

0 0 12 0

0 0 0 12


(74)
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Fig. 12. Measured distance between the four sub-sensors and the three base
stations in Scenario 3. (a) Sensor 1. (b) Sensor 2. (c) Sensor 3. (d) Sensor 4.

Figures 13 and 14 show the estimated trajectories and the
CDF of the positioning error using different algorithms, re-
spectively. Table III summarizes the RMS, maximum (MAX),
and standard deviation (STD) of the positioning error statistics
using different methods.

TABLE III
POSITIONING ERROR STATISTICS OF DIFFERENT METHODS IN SCENARIO 3.

Error (m) Sub-sensor UKF UPSE Proposed

RMS

1
2
3
4

Average

0.516
0.511
0.522
0.518
0.517

0.411
0.423
0.407
0.397
0.410

0.333
0.343
0.343
0.334
0.338

MAX

1
2
3
4

Average

1.232
1.646
1.322
1.351
1.388

1.221
1.169
1.103
1.146
1.141

0.978
0.981
0.865
0.863
0.922

STD

1
2
3
4

Average

0.256
0.253
0.268
0.241
0.255

0.220
0.205
0.203
0.192
0.205

0.156
0.165
0.166
0.164
0.163

0 10 20 30 40
East (m)

N
or

th
 (m

)

0

10

20

30 (c)

0 10 20 30 40
East (m)

0

10

20

30 (d)

N
or

th
 (m

)

0

10

20

30

0 10 20 30 40
East (m)

(a)

0 10 20 30 40
East (m)

0

10

20

30 (b)

UKF
UPSE
Proposed
True

Fig. 13. Estimated trajectories using different methods in Scenario 3. (a)
Sub-sensor 1. (b) Sub-sensor 2. (c) Sub-sensor 3. (d) Sub-sensor 4.

For the nonlinear measurement models, the distance con-
straint also improves the state estimation accuracy of the
nonlinear filter algorithms. The proposed algorithm has higher
positioning accuracy than UKF and UPSE and reduces the
positioning error (average RMS) by 34.6 % and 17.8%,
respectively. Moreover, the proposed algorithm reduces the
MAX and STD of the positioning error. For the nonlinear sys-
tem, the effectiveness of the proposed algorithm in improving
the positioning performance is demonstrated in Scenario 3.
Further, the proposed algorithm can be implemented in most
multi-sensor system applications. The simulation results also
verify the universality of the proposed algorithm for multi-
sensor positioning systems.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3319636

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on September 29,2023 at 01:15:08 UTC from IEEE Xplore.  Restrictions apply. 



11

0 0.2 0.4 0.6 0.8 1.0 1.2
Positioning error (m)

0

20

40

60

80

100

C
D

F 
(%

)

0 0.2 0.4 0.6 0.8 1.0 1.2
Positioning error (m)

0

20

40

60

80

100
(c) (d)

0 0.2 0.4 0.6 0.8 1.0 1.2
Positioning error (m)

0

20

40

60

80

100
C

D
F 

(%
)

0 0.2 0.4 0.6 0.8 1.0 1.2
Positioning error (m)

0

20

40

60

80

100

UKF
UPSE
Proposed

(a) (b)

Fig. 14. CDF of the positioning error using different methods in Scenario 3.
(a) Sub-sensor 1. (b) Sub-sensor 2. (c) Sub-sensor 3. (d) Sub-sensor 4.

VI. CONCLUSION AND FUTURE WORK

This study proposed an iterative constraint algorithm to
solve the distance constraint optimization problem of the
multi-sensor system. The proposed algorithm was compared
with the current representative of the UKF-based pseudo-
observation and quadratic constraint methods using positioning
simulations. The simulation results demonstrate the advantages
of the proposed algorithm in terms of positioning performance,
covariance matrix estimation, and operational efficiency (or
computational complexity). The proposed algorithm is univer-
sally applicable to multi-sensor systems with multiple sub-
sensors.

For future work, we will study the distance constraint
optimization problem with noise, and then extend the proposed
algorithm to distributed Kalman filter to adapt to a larger-
scale multi-sensor system. Furthermore, we will apply the
proposed algorithm to improve the positioning performance
in real applications, such as the multi-sensor-based wheeled
robot and pedestrian positioning system.

REFERENCES

[1] J. Rantakokko, J. Rydell, P. Strömbäck, P. Händel, J. Callmer,
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